Plantation Establishment (plantation + establishment)

Distribution by Scientific Domains


Selected Abstracts


Streamwater quality as affected by wild fires in natural and manmade vegetation in Malaysian Borneo

HYDROLOGICAL PROCESSES, Issue 5 2004
Anders Malmer
Abstract In 1998 a wild fire struck a paired catchment research area under long-term monitoring of hydrological and nutrient budgets. Streamwater quality as concentrations of dissolved and suspended particulate matter was monitored during 1·5,2·5 years after the fire in streams from seven different catchments. As the catchments, due to earlier experimental treatments, had different vegetations, varying effects related to different fire intensities were observed. The highest, mean stormflow, suspended sediment concentrations resulted from intensive fire in secondary vegetation that had experienced severe soil disturbance in previous treatments (crawler tractor timber extraction 10 years earlier). Stormflow concentrations were typically still about 400 mg l,1 in 1999 (10,21 months after the fire), which was about the maximum recorded concentration in streams during initial soil disturbance in 1988. Forest fire in natural forest resulted in less than half as high stormflow concentrations. For dissolved elements in streamwater there was a positive relation between fuel load (and fire intensity) and concentration and longevity of effects. Stream baseflow dissolved nutrient concentrations were high in the months following the fire. Mean baseflow K concentrations were 8,15 mg l,1 in streams draining catchments with intensive fire in secondary vegetation with large amounts of fuel. After controlled fire for forest plantation establishment in 1988 corresponding concentrations were 3,5 mg l,1, and after forest fire in natural forest in this study about 2 mg l,1. This study shows differences in response from controlled fire for land management, forest fire in natural forests and wild fires in manmade vegetations. These differences relate to resistance and resilience to fire for the involved ecosystems. There is reason to believe that wild fires and repeated wild fires during or after droughts, in successions caused by human influence, may lead to larger losses of ecosystem nutrient capital from sites compared with forest fires in natural forests. As fire in the humid tropics becomes more common, in an increasingly spatially fragmented landscape, it will be important to be aware of these differences. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat change

AUSTRAL ECOLOGY, Issue 3 2005
D. PEARSON
Abstract Large predators play important ecological roles, but often are sensitive to habitat changes and thus are early casualties of habitat perturbation. Pythons are among the largest predators in many Australian environments, and hence warrant conservation-orientated research. Carpet pythons (Morelia spilota imbricata) have declined across much of south-western Australia presumably because of habitat clearance and degradation. Information on habitat use, home range sizes and movements is needed to plan for the conservation of this important predator. We studied pythons at two study sites (Garden Island and Dryandra Woodland) with markedly different climates, habitat types and disturbance histories. We surgically implanted radio-transmitters in 91 pythons and tracked them for periods of 1 month to 4 years. Dryandra pythons remained inactive inside tree hollows during cooler months (May,September), whereas some (especially small) pythons on Garden Island continued to move and feed. Overall weekly displacements (mean = 100,150 m) were similar at the two study sites and among sex/age classes, except that reproductive females were sedentary during summer while they were incubating eggs. Home ranges averaged 15,20 ha. Adult male pythons had larger home ranges than adult females at Dryandra, but not at Garden Island. Radio-tracked snakes at Dryandra exhibited high site fidelity, returning to previously occupied logs after long absences and reusing tree hollows for winter shelter. Many of the logs used by snakes had been felled during plantation establishment >70 years ago, with little subsequent regeneration of source trees. In contrast, Garden Island snakes usually sheltered under dense shrubs. Habitat usage was similar among different sex/age classes of snakes at each site, except that juvenile pythons were more arboreal than adults. Although carpet pythons demonstrate great flexibility in habitat use, certain habitat elements appear critical for the persistence of viable populations. Fire plays a central role in this process, albeit in complex ways. For example, low-intensity fires reduce the availability of hollow logs on the ground at Dryandra and fail to regenerate shrub thickets required by prey species. Paradoxically, high-intensity fires stimulate shrub thickets and fell trees creating new logs , but might also threaten overwinter trees. Thus, the impact of disturbances (such as wildfires) on the viability of python populations will be mediated in complex ways by alteration to important microhabitats such as vegetation cover or log availability. At Dryandra, landscape management should include occasional fire events to generate new logs as well as shrub thickets used by prey. Strategic burning may also be required at Garden Island to regenerate some vegetation communities. [source]


Wildlife habitat strips and native forest ground-active beetle assemblages in plantation nodes in northeast Tasmania

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2005
Simon Grove
Abstract, In Tasmania, plantation establishment is often concentrated in ,nodes', a practice that can result in a high degree of fragmentation of remaining native forest in these areas. In this study we examined the sensitivity of ground-active beetles to the effects of conversion of native forest to plantation in which remaining native forest is largely confined to narrow wildlife habitat strips. At five damp sclerophyll forest sites in northeast Tasmania, pitfall sampling was carried out along the middle axis of a wildlife habitat strip, in the young plantation surrounding the strip, and at three distances in from the edge of nearby continuous native forest. The study documented a rich fauna, particularly for carabids. Species composition varied among sites, emphasising the need for adequate regional reservation of native forest at appropriate spatial scales. While plots in plantations and strips supported similar numbers of species as continuous native forest, they usually differed in assemblage composition. In general, assemblages in strips appeared to be intermediate in composition between those of continuous native forest and plantations. Significant differences corresponding to a progressive change in assemblage composition with distance into continuous native forest from its edge were detected for one, possibly two, sites. Plots in strips were generally more similar in assemblage composition to those near the edge of continuous native forest than to those towards its interior. Within the study area, strips may promote the survival of species that otherwise associate with the edges of continuous native forest, but they may provide less effective habitat for species that associate with native forest interiors. However, they still harbour many native forest species which are rare or absent in plantations. Although only based on a short-term sampling program, the study implies that future strips in Tasmanian damp sclerophyll forest could better benefit some forest interior species if prescriptions were to specify wider strips. However, a clearer conservation outcome might be to ensure the continuance of a sufficiently comprehensive, adequate and representative network of native forest formal reserves (in addition to wildlife habitat strips) containing damp sclerophyll forest. These should be large enough to cater for forest interior species, and dispersed at a spatial scale appropriate to the rate of species turnover found among ground-active beetle assemblages in these forests. [source]


Forest Conversion and Degradation in Papua New Guinea 1972,2002

BIOTROPICA, Issue 3 2009
Phil L. Shearman
ABSTRACT Quantifying forest change in the tropics is important because of the role these forests play in the conservation of biodiversity and the global carbon cycle. One of the world's largest remaining areas of tropical forest is located in Papua New Guinea. Here we show that change in its extent and condition has occurred to a greater extent than previously recorded. We assessed deforestation and forest degradation in Papua New Guinea by comparing a land-cover map from 1972 with a land-cover map created from nationwide high-resolution satellite imagery recorded since 2002. In 2002 there were 28,251,967 ha of tropical rain forest. Between 1972 and 2002, a net 15 percent of Papua New Guinea's tropical forests were cleared and 8.8 percent were degraded through logging. The drivers of forest change have been concentrated within the accessible forest estate where a net 36 percent were degraded or deforested through both forestry and nonforestry processes. Since 1972, 13 percent of upper montane forests have also been lost. We estimate that over the period 1990,2002, overall rates of change generally increased and varied between 0.8 and 1.8 percent/yr, while rates in commercially accessible forest have been far higher,having varied between 1.1 and 3.4 percent/yr. These rates are far higher than those reported by the FAO over the same period. We conclude that rapid and substantial forest change has occurred in Papua New Guinea, with the major drivers being logging in the lowland forests and subsistence agriculture throughout the country with comparatively minor contributions from forest fires, plantation establishment, and mining. RESUMEN Sopos long kisim gutpela save long senis i kamak long tropics em i wanpela bik pela samting long wanem, bikpela bus em wanpela hap we wok konsevason na carbon cycle bai inap kirapim gutpela wok. Insait long olgeta hap long world, PNG em wanpela hap we bikpela bus em i stap yet. Insait long dispela wok mipela soim olsem bikpela senis em i kamap long insait long bikpela bus na long hamas bikpela bus yumi gat. Nogat wanpela kain wok painimaut emi painim dispela senis bipo. Mipela lukluk gut long we olgeta bikpela bus i raus na we bus i kisim bagarap insait long, yia 1972 i kamap inap long yia 2002. Long yia 1972 mipela i usim map ol i kolim land cover map na long yia 2002 mipela lukluk long olgeta PNG high-resolution satellite imagery. Long yia 2002, 28,251,967 hectares bikpela bus i stap insait long Papua New Guinea. Long namel long 1972 igo inap long 2002, Papua New Guinea i lusim 15 percent long algeta bipela bus belong en. Insait long dispela 15 percent, 8.8 percent em i kamap bikos ol lain i katim diwai long salim. As bilong senisim bikela bus emi stap long ples we igat bikpela diwai long katim. Insait long dispela hap yumi lusim 36 percent, sampela we yumi inap long salim, tasol narapela emi bikos yumi rausim bus long wokim gaden or narapela kainkain pasin yumi wokim. Long 1972 i kamap inap long yia 2002, yumi lusim 13 percent long bikpela bus raonim ol bikpela maunten. Mipela painim olsem, long yia 1990 igo inap long yia 2002, long algeta kantri kain senis i wok long kamap bikpla. Senis istap insait long 0.8 igo inap long 1.8 percent long wan wan yia, tasol insait long wan wan liklik hap some pela i kisim bikpela senis, na ol narapela ino tumas. Long ol hap igat gutpela diwai long katim, senis i stat long 1.1 percent igo inap 3.4 percent. Dispela senis em i winim estimates we ol lain FAO i bin tokaut long em bipo. Long dispela wok painimaut, mipela iken tok olsem, as bilong dispela bikpela senis emi kamap long wanem ol i rausim na bagarapim bikpela bus. Dispela asua i kamap taim yumi rausim planti diwai tumas long salim na sampela taim yumi katim bus long wokim garden. Sampela taim bikpela paia tu i save kukim bikpela bus. [source]