Home About us Contact | |||
Plant Species Richness (plant + species_richness)
Selected AbstractsImpact of Forest Fragmentation on Understory Plant Species Richness in AmazoniaCONSERVATION BIOLOGY, Issue 2 2003Julieta Benítez-Malvido In Central Amazonia, 9 to 19 years after fragmentation, we recorded species richness and net seedling recruitment rate in forest fragments of 1, 10, and 100 ha and in continuous forest. In 1991 all seedlings 5,100 cm tall within permanent 1-m2 plots in fragments and continuous forest were counted and grouped into tree, liana, palm, and herb life-form classes. In 1993 we manually removed all seedlings that were <1 m tall from the permanent plots. Six years and 5 months later ( 1999 ), all new seedlings recruited into the plots were counted, grouped into different life forms, and classified into distinct morphospecies. The species richness of recruited tree, liana, herb, and palm seedlings was lower in forest fragments than in continuous forest, with the 1-ha fragment having the poorest species richness. The total number of recruited individuals was 40% less than that previously present for all life forms, except lianas. Liana recruitment was 7% to 500% higher than the original abundance in the forest fragments and continuous forest. In general, species similarity was higher among fragments than between fragments and continuous forest, with the 1-ha fragment being less similar. Species rank/abundance curves showed that continuous forest species in all life forms tended to disappear in forest fragments, whereas common species in forest fragments were absent from continuous forest. Overall, our results suggest that the life-form composition and structure of the regenerative plant pool in fragments were shifting toward a species-poor seedling community. Losses of understory species diversity, but especially of tree seedlings, threaten the maintenance of rainforest biodiversity and compromise future forest regeneration. Resumen: La fragmentación de las selvas tropicales afecta severamente a a los árboles de gran porte, sin embargo, su efecto sobre otros estadíos y formas de vida de las plantas es poco conocido. En la Amazonia central, de 9 a 19 años después de la fragmentación, se registró la riqueza de especies y la tasa neta de reclutamiento de plántulas en fragmentos de selva de 1, 10, y 100 ha y en selva contínua. En 1991, todas las plántulas de 5,100 cm de altura dentro de cuadrantes permanentes de 1-m2 en los fragmentos y en la selva contínua, fueron contadas y agrupadas en diferentes formas de vida: árboles, lianas, palmas y hierbas. En 1993 se removieron manualmente todas las plántulas <1 m de altura dentro de los cuadrantes. Seis años y cinco meses más tarde (1999) se contaron todas las plántulas reclutadas dentro de los cuadrantes, se agruparon en diferentes formas de vida v se clasificaron en morfoespecies distintivas. La riqueza de especies de plántulas reclutadas en todas las formas de vida fue menor en los fragmentos que en la selva contínua, con el fragmento de 1 ha presentando la menor riqueza de especies. El número total de individuos reclutados fue 40% menor que los previamente presentes para todas las formas de vida, excepto lianas. El reclutamiento de lianas fué de 7 a 500% mayor que la abundancia original en los fragmentos y en la selva contínua. En general la similitud de especies fué mayor entre fragmentos que entre fragmentos y selva contínua, con el fragmento de 1-ha siendo el menos similar. Las curvas de rango/abundancia de especies, mostraron que las especies de selva contínua en todas las formas de vida tendieron a desaparecer de los fragmentos, mientras que las especies comunes en los fragmentos estuvieron ausentes en la selva contínua. En general, nuestros resultados sugieren que la composición de formas de vida y la estructura del banco regenerativo en fragmentos tienden a convertirse en una comunidad de plántulas pobre en especies. La pérdida de diversidad de especies del sotobosque, pero especialmente de plántulas de árboles, amenaza el mantenimiento de la biodiversidad y pone en peligro la regeneración futura de la selva. [source] Effects of Restoration on Plant Species Richness and Composition in Scandinavian Semi-Natural GrasslandsRESTORATION ECOLOGY, Issue 3 2004Regina Lindborg Abstract Plant species richness in rural landscapes of northern Europe has been positively influenced by traditional management for millennia. Owing to abandonment of these practices, the number of species-rich semi-natural grasslands has decreased, and remaining habitats suffer from deterioration, fragmentation, and plant species decline. To prevent further extinctions, restoration efforts have increased during the last decades, by reintroducing grazing in former semi-natural grasslands. To assess the ecological factors that might influence the outcome of such restorations, we made a survey of semi-natural grasslands in Sweden that have been restored during the last decade. We investigated how plant species richness, species density, species composition, and abundance of 10 species that are indicators of grazing are affected by (1) the size of the restored site, (2) the time between abandonment of grazing and restoration, (3) the time elapsed since restoration, and (4) the abundance of trees and shrubs at the restored site. Only two factors, abundance of trees and shrubs and time since restoration, were positively associated with total species richness and species density per meter square at restored sites. Variation in species composition among restored sites was not related to any of the investigated factors. Species composition was relatively similar among sites, except in mesic/wet grasslands. The investigated factors had small effects on the abundance of the grazing-indicator species. Only Campanula rotundifolia responded to restoration with increasing abundance and may thus be a suitable indicator of improved habitat quality. In conclusion, positive effects on species richness may appear relatively soon after restoration, but rare, short-lived species are still absent. Therefore, remnant populations in surrounding areas may be important in fully recreating former species richness and composition. [source] Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configurationECOGRAPHY, Issue 4 2006Alexia Dufour The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history. [source] Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesisGLOBAL ECOLOGY, Issue 5 2007Milan Chytrý ABSTRACT Aim, Many high-latitude floras contain more calcicole than calcifuge vascular plant species. The species pool hypothesis explains this pattern through an historical abundance of high-pH soils in the Pleistocene and an associated opportunity for the evolutionary accumulation of calcicoles. To obtain insights into the history of calcicole/calcifuge patterns, we studied species richness,pH,climate relationships across a climatic gradient, which included cool and dry landscapes resembling the Pleistocene environments of northern Eurasia. Location, Western Sayan Mountains, southern Siberia. Methods, Vegetation and environmental variables were sampled at steppe, forest and tundra sites varying in climate and soil pH, which ranged from 3.7 to 8.6. Species richness was related to pH and other variables using linear models and regression trees. Results, Species richness is higher in areas with warmer winters and at medium altitudes that are warmer than the mountains and wetter than the lowlands. In treeless vegetation, the species richness,pH relationship is unimodal. In tundra vegetation, which occurs on low-pH soils, richness increases with pH, but it decreases in steppes, which have high-pH soils. In forests, where soils are more acidic than in the open landscape, the species richness,pH relationship is monotonic positive. Most species occur on soils with a pH of 6,7. Main conclusions, Soil pH in continental southern Siberia is strongly negatively correlated with precipitation, and species richness is determined by the opposite effects of these two variables. Species richness increases with pH until the soil is very dry. In dry soils, pH is high but species richness decreases due to drought stress. Thus, the species richness,pH relationship is unimodal in treeless vegetation. Trees do not grow on the driest soils, which results in a positive species richness,pH relationship in forests. If modern species richness resulted mainly from the species pool effects, it would suggest that historically common habitats had moderate precipitation and slightly acidic to neutral soils. [source] Plant species richness of nature reserves: the interplay of area, climate and habitat in a central European landscapeGLOBAL ECOLOGY, Issue 4 2002Petr Py Abstract Aim To detect regional patterns of plant species richness in temperate nature reserves and determine the unbiased effects of environmental variables by mutual correlation with operating factors. Location The Czech Republic. Methods Plant species richness in 302 nature reserves was studied by using 14 explanatory variables reflecting the reserve area, altitude, climate, habitat diversity and prevailing vegetation type. Backward elimination of explanatory variables was used to analyse the data, taking into account their interactive nature, until the model contained only significant terms. Results A minimal adequate model with reserve area, mean altitude, prevailing vegetation type and habitat diversity (expressed as the number of major habitat types in the reserve) accounted for 53.9% of the variance in species number. After removing the area effect, habitat diversity explained 15.6% of variance, while prevailing vegetation type explained 29.6%. After removing the effect of both area and vegetation type, the resulting model explained 10.3% of the variance, indicating that species richness further increased with habitat diversity, and most obviously towards warm districts. After removing the effects of area, habitat diversity and climatic district, the model still explained 9.4% of the variance, and showed that species richness (i) significantly decreased with increasing mean altitude and annual precipitation, and with decreasing January temperature in the region of the mountain flora, and (ii) increased with altitudinal range in regions of temperate and thermophilous flora. Main conclusions We described, in quantitative terms, the effects of the main factors that might be considered to be determining plant species richness in temperate nature reserves, and evaluated their relative importance. The direct habitat effect on species richness was roughly equal to the direct area effect, but the total direct and indirect effects of area slightly exceeded that of habitat. It was shown that the overall effect of composite variables such as altitude or climatic district can be separated into particular climatic variables, which influence the richness of flora in a context-specific manner. The statistical explanation of richness variation at the level of families yielded similar results to that for species, indicating that the system of nature conservation provides similar degrees of protection at different taxonomic levels. [source] Role of host identity in effects of phytogenic mounds on plant assemblages and species richness on coastal arid dunesJOURNAL OF VEGETATION SCIENCE, Issue 5 2007Magdy I. El-Bana Abstract Question: Phytogenic mounds (nebkhas) - the natural accumulation of wind-blown sediments within or around the canopies of plants - have been proposed as important structures for locally maintaining high species richness in coastal and arid ecosystems. Nebkhas are assumed to increase habitat heterogeneity, but what is the importance of the nebkha host species relative to other nebkha characteristics in determining the associated plant assemblages? Are some host species more effective in creating diversity hotspots, or does a single species-area relationship apply to all nebkhas, regardless of host species? Can the influence of the host be ascribed to its indirect effects on abiotic attributes of the nebkha complex? Methods and location: We investigated plant species richness and composition on nebkhas around six psammophytic species on Mediterranean coastal dunes of the Sinai Peninsula. Results: Plant species richness was significantly related to nebkha size by the single power function according to the general prediction of island biogeography theory, but this relationship was modified - though to a limited degree - by nebkha host species identity. Canonical Correspondence Analysis revealed that nebkha host species identity and nebkha environmental and non-environmental factors significantly explained species composition on the nebkhas, but host species identity did so to a greater extent. The latter might reflect differences in seed trapping ability or free space for colonization between host species. Conclusion: Differences in community composition and richness among nebkhas formed by different host species represent a key factor in the maintenance of plant diversity on arid coastal dunes. [source] Land use history and site location are more important for grassland species richness than local soil propertiesNORDIC JOURNAL OF BOTANY, Issue 6 2009Sara A. O. Cousins Lately there has been a shift in Sweden from grazing species-rich semi-natural grasslands towards grazing ex-arable fields in the modern agricultural landscape. Grazing ex-arable fields contain a fraction of the plant species richness confined to semi-natural grasslands. Still, they have been suggested as potential target sites for re-creation of semi-natural grasslands. We asked to what extent does fine-scale variation in soil conditions, management history and site location effect local plant diversity in grazed ex-arable fields. We examined local soil conditions such as texture, pH, organic carbon, nitrogen (N) and extractable phosphate (P) and effects on plant richness in ten pairs of grazed ex-fields and neighbouring semi-natural grasslands in different rural landscapes. Each grassland pair where in the same paddock. A multivariate test showed that site location and land use history explained more of differences in species richness than local soil property variables. Plant species richness was positively associated to grazed ex-fields with low pH, low N and P levels. Sites with high plant richness in semi-natural grasslands also had more species in the adjacent grazed ex-fields, compared to sites neighbouring less species-rich semi-natural grasslands. Although both soil properties and species richness were different in grazed ex-fields compared to semi-natural grassland, the site location within a landscape, and vicinity to species-rich grasslands, can override effects of soil properties. In conclusion, if properly located, ex-arable fields may be an important habitat to maintain plant diversity at larger spatio-temporal scales and should considered as potential sites for grassland restoration. [source] Effects of Restoration on Plant Species Richness and Composition in Scandinavian Semi-Natural GrasslandsRESTORATION ECOLOGY, Issue 3 2004Regina Lindborg Abstract Plant species richness in rural landscapes of northern Europe has been positively influenced by traditional management for millennia. Owing to abandonment of these practices, the number of species-rich semi-natural grasslands has decreased, and remaining habitats suffer from deterioration, fragmentation, and plant species decline. To prevent further extinctions, restoration efforts have increased during the last decades, by reintroducing grazing in former semi-natural grasslands. To assess the ecological factors that might influence the outcome of such restorations, we made a survey of semi-natural grasslands in Sweden that have been restored during the last decade. We investigated how plant species richness, species density, species composition, and abundance of 10 species that are indicators of grazing are affected by (1) the size of the restored site, (2) the time between abandonment of grazing and restoration, (3) the time elapsed since restoration, and (4) the abundance of trees and shrubs at the restored site. Only two factors, abundance of trees and shrubs and time since restoration, were positively associated with total species richness and species density per meter square at restored sites. Variation in species composition among restored sites was not related to any of the investigated factors. Species composition was relatively similar among sites, except in mesic/wet grasslands. The investigated factors had small effects on the abundance of the grazing-indicator species. Only Campanula rotundifolia responded to restoration with increasing abundance and may thus be a suitable indicator of improved habitat quality. In conclusion, positive effects on species richness may appear relatively soon after restoration, but rare, short-lived species are still absent. Therefore, remnant populations in surrounding areas may be important in fully recreating former species richness and composition. [source] Acidification of sandy grasslands , consequences for plant diversityAPPLIED VEGETATION SCIENCE, Issue 3 2009Pål Axel Olsson Abstract Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits in south-eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands. Calcareous soils cannot be restored through shallow ploughing, but deep perturbation could increase the limestone content of the topsoil and favour of target species. [source] Do cities export biodiversity?DIVERSITY AND DISTRIBUTIONS, Issue 1 2008Traffic as dispersal vector across urban, rural gradients ABSTRACT Urban areas are among the land use types with the highes richness in plant species. A main feature of urban floras is the high proportion of non-native species with often divergent distribution patterns along urban,rural gradients. Urban impacts on plant species richness are usually associated with increasing human activity along rural-to-urban gradients. As an important stimulus of urban plant diversity, human-mediated seed dispersal may drive the process of increasing the similarity between urban and rural floras by moving species across urban,rural gradients. We used long motorway tunnels as sampling sites for propagules that are released by vehicles to test for the impact of traffic on seed dispersal along an urban,rural gradient. Opposite lanes of the tunnels are separated by solid walls, allowing us to differentiate seed deposition associated with traffic into vs. out of the city. Both the magnitude of seed deposition and the species richness in seed samples from two motorway tunnels were higher in lanes leading out of the city, indicating an ,export' of urban biodiversity by traffic. As proportions of seeds of non-native species were also higher in the outbound lanes, traffic may foster invasion processes starting from cities to the surrounding landscapes. Indicator species analysis revealed that only a few species were confined to samples from lanes leading into the city, while mostly species of urban habitats were significantly associated with samples from the outbound lanes. The findings demonstrate that dispersal by traffic reflects different seed sources that are associated with different traffic directions, and traffic may thus exchange propagules along the urban,rural gradient. [source] On the importance of patch attributes, environmental factors and past human impacts as determinants of perennial plant species richness and diversity in Mediterranean semiarid steppesDIVERSITY AND DISTRIBUTIONS, Issue 1 2004Fernando T. Maestre ABSTRACT Richness and diversity of perennial plant species were evaluated in 17 Stipa tenacissima steppes along a degradation gradient in semiarid SE Spain. The main objective of the study was to evaluate the relative importance of historical human impacts, small-scale patch attributes and environmental factors as determinants of perennial plant species richness and diversity in S. tenacissima steppes, where vegetation is arranged as discrete plant patches inserted on a bare ground matrix. Partial least squares regression was used to determine the amount of variation in species richness and diversity that could be significantly explained by historical human impacts, patch attributes, and environmental factors together and separately. They explained up to 89% and 69% of the variation in species richness and diversity, respectively. In both cases, the predictive power of patch attributes models was higher than that of models consisting of abiotic characteristics and variables related to human impact, suggesting that patch attributes are the major determinants of species richness and diversity in semiarid S. tenacissima steppes. However, patch attributes alone are not enough to explain the observed variation in species richness and diversity. The area covered by late-successional sprouting shrubs and the distance between consecutive patches were the most influencing individual variables on species richness and diversity, respectively. The implications of these results for the management of S. tenacissima steppes are discussed. [source] Influence of settlement time, human population, park shape and age, visitation and roads on the number of alien plant species in protected areas in the USADIVERSITY AND DISTRIBUTIONS, Issue 6 2002Michael L. McKinney Abstract. I examined a data set of 77 protected areas in the USA (including national and state parks) to determine which of the following variables most strongly influence alien plant species richness: park area, climate (temperature and precipitation), native species richness, visitation rate, local human population size, total road length, park shape and duration of European settlement. Many of these predictor variables are intercorrelated, so I used multiple regression to help separate their effects. In support of previous studies, native species richness was the best single predictor of alien species richness, probably because it was a good estimator of both park area and habitat diversity available for establishment of alien species. Other significant predictors of alien species richness were years of occupation of the area by European settlers and the human population size of adjacent counties. Climate, visitation rate, road length and park shape did not influence alien species richness. The proportion of alien species (alien richness/native richness) is inversely related to park area, in agreement with a previous study. By identifying which variables are most important in determining alien species richness, such findings suggest ways to reduce alien species establishment. [source] Regularity of species richness relationships to patch size and shapeECOGRAPHY, Issue 4 2007Einar Heegaard This study aims to assess the degree of regularity in the effect of patch size and patch shape on plant species richness across a macroscale region, and to evaluate the implications for nature conservation. Our study area covers south-eastern Norway and contains 16 agricultural landscapes with 2162 patches. To analyse regularity a local linear mixed model (LLMM) was applied. This procedure estimates the richness trends due to shared effects of size and shape, and simultaneously provides the landscape-specific random effect. The latter is a direct estimate of the degree of irregularity between the landscapes, conditioned on specific values of size and shape. The results show a positive interaction between the shape and size of patches, which is repeated for all landscapes. The shape of the patches produces more regular patterns in species richness than the size of patches. This we attribute to effects of dispersal and distance to neighbouring patches of different environmentally conditioned species pools. Large and complex patches have shorter average distance to neighbouring patches (of different types) than large simple-shaped (circular) patches have. We attribute the higher species richness of the former, given a similar area, to a higher number of species dispersed from the outside into the more complex plot. For small patches, however, the distance to the edge is short relative to normal dispersal distances, for patches of all shapes. This explains why the positive effect of shape complexity on species richness is stronger for large patches. This interpretation is supported by a strong spatial correlation conditioned on the most complex patches. Theories of dynamics in biodiversity in patchy landscapes must consider shape as a regulator at the same level as size, and both shape and size of patches should be simultaneously taken into account for management planning. [source] Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configurationECOGRAPHY, Issue 4 2006Alexia Dufour The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history. [source] The river domain: why are there more species halfway up the river?ECOGRAPHY, Issue 2 2006Robert R. Dunn Biologists have long noted higher levels of species diversity in the longitudinal middle-courses of river systems and have proposed many explanations. As a new explanation for this widespread pattern, we suggest that many middle-course peaks in richness may be, at least in part, a consequence of geometric constraints on the location of species' ranges along river courses, considering river headwaters and mouths as boundaries for the taxa considered. We demonstrate this extension of the mid-domain effect (MDE) to river systems for riparian plants along two rivers in Sweden, where a previous study found a middle-course peak in richness of natural (non-ruderal) species. We compare patterns of empirical richness of these species to null model predictions of species richness along the two river systems and to spatial patterns for six environmental variables (channel width, substrate fineness, substrate heterogeneity, ice scour, bank height, and bank area). In addition, we examine the independent prediction of mid-domain effects models that species with large ranges, because the location of their ranges is more constrained, are more likely to produce a mid-domain peak in richness than are species with small ranges. Species richness patterns of riparian plants were best predicted by models including both null model predictions and environmental variables. When species were divided into large-ranged and small-ranged groups, the mid-domain effect was more prominent and the null model predictions were a better fit to the empirical richness patterns of large-ranged species than those of small-ranged species. Our results suggest that the peak in riparian plant species richness in the middle courses of the rivers studied can be explained by an underlying mid-domain effect (driven by geometric constraints on large-ranged species), together with environmental effects on richness patterns (particularly on small-ranged species). We suggest that the mid-domain effect may help to explain similar middle-course richness peaks along other rivers. [source] Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslandsECOGRAPHY, Issue 4 2005Jörg Perner Arthropod abundance has been hypothesized to be correlated with plant diversity but the results of previous studies have been equivocal. In contrast, plant productivity, vegetation structure, abiotic site conditions, and the physical disturbance of habitats, are factors that interact with plant diversity, and that have been shown to influence arthropod abundance. We studied the combined effect of plant species diversity, productivity and site characteristics on arthropod abundance in 71 managed grasslands in central Germany using multivariate statistics. For each site we determined plant species cover, plant community biomass (productivity), macro- and micronutrients in the soil, and characterized the location of sites with respect to orographic parameters as well as the current and historic management regimes. Arthropods were sampled using a suction sampler and classified a priori into functional groups (FGs). We found that arthropod abundance was not correlated with plant species richness, effective diversity or Camargo's evenness, even when influences of environmental variables were taken into account. In contrast, plant community composition was highly correlated with arthropod abundances. Plant community productivity influenced arthropod abundance but explained only a small proportion of the variance. The abundances of the different arthropod FGs were influenced differentially by agricultural management, soil characteristics, vegetation structure and by interactions between different FGs of arthropods. Herbivores, carnivores and detritivores reacted differently to variation in environmental variables in a manner consistent with their feeding mode. Our results show that in natural grassland systems arthropod abundance is not a simple function of plant species richness, and they emphasize the important role of plant community composition for the abundance patterns of the arthropod assemblages. [source] Effects of insects on primary production in temperate herbaceous communities: a meta-analysisECOLOGICAL ENTOMOLOGY, Issue 5 2003Malcolm D. Coupe Abstract., 1. The effects of insects on primary production in temperate herbaceous communities were investigated in a meta-analysis. The following hypotheses were tested: (1) the effect of insects on primary production depends on community type, (2) the effect of insects on primary production varies as a function of productivity, (3) insects have a greater effect on primary production in communities with low species diversity, and (4) insects have a larger effect on primary production during outbreaks. 2. Data were collected from 24 studies in which insecticides were used to suppress insects in self-sown or pastoral communities. Effect sizes were calculated from sprayed and control plot standing crop or yield, expressed as the log response ratio, ln (sprayed plot phytomass/control plot phytomass). 3. There was a significant increase in primary production as a result of insect suppression. Forb-dominated communities showed a more variable response than graminoid communities. During outbreaks, insects had a greater negative impact on primary production. Effect size was unaffected by productivity or plant species richness. 4. Although insects lower primary production in a diversity of temperate herbaceous communities, the basic measures by which such communities are often described have little effect on the proportional impact that insects have on primary production. While outbreaks are significant predictors of higher negative impact on primary production, causes of outbreaks are not always related to traits of the plant community. [source] The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystemsECOLOGY LETTERS, Issue 3 2008Marcel G. A. Van Der Heijden Abstract Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5,20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems. [source] Scale dependence of the correlation between human population presence and vertebrate and plant species richnessECOLOGY LETTERS, Issue 1 2007Marco Pautasso Abstract Human presence is generally negatively related to species richness locally, but the relationship is positive at coarse scales. An increase in the strength of the latter correlation with increasing study resolution has been documented within studies, but it is not known whether such a scale dependence is present across different studies. We test this with data on the spatial co-occurrence of human beings and the species richness of plants and vertebrates from a continuum of scales. The correlation coefficient between human presence and species richness is positively related to study grain and extent. The correlation turns from positive to negative below a study grain of c. 1 km and below a study extent of c. 10 000 km2. The broad-scale positive correlation between human presence and species richness suggests that people have preferentially settled and generally flourished in areas of high biodiversity and/or have contributed to it with species introductions and habitat diversification. The scale dependency of the correlation between people and biodiversity's presence emphasizes the importance of the preservation of green areas in densely populated regions. [source] Anthropogenic impacts upon plant species richness and net primary productivity in CaliforniaECOLOGY LETTERS, Issue 2 2005John W. Williams Abstract We assess the importance of anthropogenic land-use, altered productivity, and species invasions for observed productivity,richness relationships in California. To this end, we model net primary productivity (NPP) c. 1750 AD and at present (1982,1999) and map native and exotic vascular plant richness for 230 subecoregions. NPP has increased up to 105% in semi-arid areas and decreased up to 48% in coastal urbanized areas. Exotic invasions have increased local species diversity up to 15%. Human activities have reinforced historical gradients in species richness but reduced the spatial heterogeneity of NPP. Structural equation modelling suggests that, prior to European settlement, NPP and richness were primarily controlled by precipitation and other abiotic variables, with NPP mediating richness. Abiotic variables remain the strongest predictors of present NPP and richness, but intermodel comparisons indicate a significant anthropogenic impact upon statewide distributions of NPP and richness. Exotic and native species each positively correlate to NPP after controlling for other variables, which may help explain recent reports of positively associated native and exotic richness. [source] Mechanisms of positive biodiversity,production relationships: insights provided by ,13C analysis in experimental Mediterranean grassland plotsECOLOGY LETTERS, Issue 5 2001Maria C. Caldeira We investigated the role of water use in a Mediterranean grassland, in which diversity was experimentally manipulated, and a positive relationship was observed between plant species richness and productivity. Soil moisture patterns and stable carbon isotope ratios (,13C) in leaves indicated greater water use by plants growing in species-rich mixtures compared to monocultures. These results suggest that complementarity or facilitation may be the mechanism responsible for the positive relationship between plant diversity and ecosystem processes. [source] The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivityECOLOGY LETTERS, Issue 2 2000John N Klironomos Ecological theory predicts a positive and asymptotic relationship between plant diversity and ecosystem productivity based on the ability of more diverse plant communities to use limiting resources more fully. This is supported by recent empirical evidence. Additionally, in natural ecosystems, plant productivity is often a function of the presence and composition of mycorrhizal associations. Yet, the effect of mycorrhizal fungi on the relationship between plant diversity and productivity has not been investigated. We predict that in the presence of AMF, productivity will saturate at lower levels of species richness because AMF increase the ability of plant species to utilize nutrient resources. In this study we manipulated old-field plant species richness in the presence and absence of two species of AMF. We found that in the absence of AMF, the relationship between plant species richness and productivity is positive and linear. However, in the presence of AMF, the relationship is positive but asymptotic, even though the maximum plant biomass was significantly different between the two AMF treatments. This is consistent with the hypothesis that AMF increase the redundancy of plant species in the productivity of plant communities, and indicates that these symbionts must be considered in future investigations of plant biodiversity and ecosystem function. [source] Species richness and susceptibility to heat and drought extremes in synthesized grassland ecosystems: compositional vs physiological effectsFUNCTIONAL ECOLOGY, Issue 6 2004L. VAN PEER Summary 1We investigated effects of declining plant species richness (S) on resistance to extremes in grassland communities. 2Synthesized model ecosystems of different S, grown outdoors in containers, were exposed to a stress peak combining heat and drought. The heat wave was induced experimentally by infrared irradiation in free air conditions. 3Before the heat wave, the more species-rich communities produced more biomass as a result of a large and positive complementarity effect that outweighed a small negative selection effect. 4Water use during the heat wave was likewise enhanced by S, which could not be attributed to dominance of ,water-wasting' species. Instead, water consumption at high S exceeded that expected from changes in community biomass and biomass composition. The observed enhancement of resource (water) acquisition under stress with increasing S therefore probably originated from complementarity. 5Despite enhanced water use in the more diverse communities, plant survival was significantly less, affecting all species alike. Physiological stress, recorded as photochemical efficiency of photosystem II electron transport, was significantly greater. Before the heat wave, the changes in biomass composition that coincided with increasing S did not favour species that would later prove intrinsically sensitive or insensitive. 6Complementarity in resource use for biomass production had a cost in terms of reduced survival under stress, despite the likelihood of complementarity in water acquisition during exposure. The greater loss of individuals from the more diverse grasslands suggests enhanced risk of local extinction. [source] A 10-year decrease in plant species richness on a neotropical inselberg: detrimental effects of global warming?GLOBAL CHANGE BIOLOGY, Issue 10 2009EMILE FONTY Abstract The census of vascular plants across a 10-year interval (1995,2005) at the fringe of a neotropical rainforest (Nouragues inselberg, French Guiana, South America) revealed that species richness decreased, both at quadrat scale (2 m2) and at the scale of the inselberg (three transects, embracing the whole variation in community composition). Juvenile stages of all tree and shrub species were most severely affected, without any discrimination between life and growth forms, fruit and dispersion types, or seed sizes. Species turnover in time resulted in a net loss of biodiversity, which was inversely related to species occurrence. The most probable cause of the observed species disappearance is global warming, which severely affected northern South America during the last 50 years (+2 °C), with a concomitant increase in the occurrence of aridity. [source] Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystemsGLOBAL CHANGE BIOLOGY, Issue 2 2009PATRICIO GARCÍA-FAYOS Abstract We analyzed the consequences of climate change and the increase in soil erosion, as well as their interaction on plant and soil properties in semiarid Mediterranean shrublands in Eastern Spain. Current models on drivers of biodiversity change predict an additive or synergistic interaction between drivers that will increase the negative effects of each one. We used a climatic gradient that reproduces the predicted climate changes in temperature and precipitation for the next 40 years of the wettest and coldest end of the gradient; we also compared flat areas with 20° steep hillslopes. We found that plant species richness and plant cover are negatively affected by climate change and soil erosion, which in turn negatively affects soil resistance to erosion, nutrient content and water holding capacity. We also found that plant species diversity correlates weakly with plant cover but strongly with soil properties related to fertility, water holding capacity and resistance to erosion. Conversely, these soil properties correlate weaker with plant species cover. The joint effect of climate change and soil erosion on plant species richness and soil characteristics is antagonistic. That is, the absolute magnitude of change is smaller than the sum of both effects. However, there is no interaction between climate change and soil erosion on plant cover and their effects fit the additive model. The differences in the interaction model between plant cover and species richness supports the view that several soil properties are more linked to the effect that particular plant species have on soil processes than to the quantity and quality of the plant cover and biomass they support. Our findings suggest that plant species richness is a better indicator than plant cover of ecosystems services related with soil development and protection to erosion in semiarid Mediterranean climates. [source] Plant diversity positively affects short-term soil carbon storage in experimental grasslandsGLOBAL CHANGE BIOLOGY, Issue 12 2008SIBYLLE STEINBEISS Abstract Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ,The Jena Experiment', a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0,30 cm decreased from 7.3 kg C m,2 in 2002 to 6.9 kg C m,2 in 2004, but had recovered to 7.8 kg C m,2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short-term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log-transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build-up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long-term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation. [source] Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994,2004) at the GLORIA, master site Schrankogel, Tyrol, AustriaGLOBAL CHANGE BIOLOGY, Issue 1 2007HARALD PAULI Abstract High mountain ecosystems are defined by low temperatures and are therefore considered to react sensitively to climate warming. Responding to observed changes in plant species richness on high peaks of the European Alps, an extensive setup of 1 m × 1 m permanent plots was established at the alpine-nival ecotone (between 2900 and 3450 m) on Mount Schrankogel, a GLORIA master site in the central Tyrolean Alps, Austria, in 1994. Recording was repeated in a representative selection of 362 quadrats in 2004. Ten years after the first recording, we observed an average change in vascular plant species richness from 11.4 to 12.7 species per plot, an increase of 11.8% (or of at least 10.6% at a 95% confidence level). The increase in species richness involved 23 species (about 43% of all taxa found at the ecotone), comprising both alpine and nival species and was pronouncedly higher in plots with subnival/nival vegetation than in plots with alpine grassland vegetation. Only three species showed a decrease in plot occupancy: one was an annual species, one was rare, and one a common nival plant that decreased in one part of the area but increased in the uppermost part. Species cover changed in relation to altitudinal preferences of species, showing significant declines of all subnival to nival plants, whereas alpine pioneer species increased in cover. Recent climate warming in the Alps, which has been twice as high as the global average, is considered to be the primary driver of the observed differential changes in species cover. Our results indicate an ongoing range contraction of subnival to nival species at their rear (i.e. lower) edge and a concurrent expansion of alpine pioneer species at their leading edge. Although this was expected from predictive distribution models and different temperature-related habitat preferences of alpine and nival species, we provide first evidence on , most likely , warming-induced species declines in the high European Alps. The projected acceleration of climate warming raises concerns that this phenomenon could become the major threat to biodiversity in high mountains. [source] Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controlsGLOBAL CHANGE BIOLOGY, Issue 10 2006CARLY J. STEVENS Abstract In this study we investigate the impact of nitrogen (N) deposition on the diversity of three different vegetation functional groups , forbs, grasses and mosses , using a field survey of acid grasslands across Great Britain. Our aim is to identify the vegetation types that are most vulnerable to enhanced N deposition, and to shed light on the mechanisms that may be driving N-initiated species changes in the UK. Sixty-eight randomly selected grasslands belonging to the UK National Vegetation Classification group U4 (Festuca ovina,Agrostis capillaris,Galium saxatile grassland) were studied along a gradient of atmospheric N deposition ranging from 6 to 36 kg N ha,1 yr,1. At each site, vegetation was surveyed and samples were taken from the topsoil and subsoil. Aboveground plant material was collected from three species: a forb, grass and moss. Both the species richness and cover of forbs declined strongly with increasing N deposition, from greater than eight species/20% cover per m2 quadrat at low levels of N to fewer than two species/5% cover at the highest N deposition levels. Grasses showed a weak but significant decline in species richness, and a trend toward increasing cover with increasing N input. Mosses showed no trends in either species richness or cover. Most of the decline in plant species richness could be accounted for by the level of ammonium deposition. Soil KCl-extractable ammonium concentration showed a significant positive correlation with N input, but there was no relationship between N deposition and extractable nitrate. In the soil O/A horizon, there was no relationship between N deposition and %N, and only a very weak positive relationship between the level of N deposition and the C : N ratio. Finally, in the vegetation, there was no relationship between N deposition and either shoot tissue N concentration or N : P ratio for any of the three reference species. Combining our regional survey with the results of published N-addition experiments provides compelling evidence that there has been a significant decline in the species richness and cover of forbs across Great Britain, and that the primary cause is competition due to an increase in the cover of grasses in response to enhanced deposition of reactive N, primarily NH4+. [source] Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradientsGLOBAL ECOLOGY, Issue 6 2009Lorenzo Marini ABSTRACT Aim, We tested whether the species,energy and species,human relationships vary between native and both naturalized and casual alien species richness when other environmental variables had been taken into account. Location, Trento Province, a region (c. 6200 km2) on the southern border of the European Alps (Italy), subdivided into 156 contiguous (c. 37.5 km2) cells and ranging in elevation from 66 to 3769 m. Methods, Data were separated into three subsets, representing richness of natives, naturalized aliens and casual aliens and separately related to temperature, human population and various environmental correlates of plant species diversity. We applied ordinary least squares and simultaneous autoregressive regressions to identify potential contrasting responses of the three plant status subsets and hierarchical partitioning to evaluate the relative importance of the predictor variables. Results, Variation in alien plant species richness along the region was almost entirely explained by temperature and human population density. The relationships were positive but strongly curvilinear. Native species richness was less strongly related to either factor but was positively related to the presence of calcareous bedrock. Native species richness had a decelerating positive relationship with temperature (R2= 55%), whereas naturalized and casual aliens had a positive accelerating relationship explaining 86% and 62% of the variation in richness, respectively. Native species richness had a positive decelerating relationship with population density (R2= 42%), whilst both alien subsets had a positive accelerating relationship. Main conclusions, Alien species richness was higher in areas with the most rich and diverse assemblages of native species. Areas at high altitudes are not especially prone to alien invasion due to energy constraints, low propagule pressure and disturbance, even considering a potential increased in temperature. Thus, if we consider future environmental change, we should expect a stronger response of aliens than natives in the currently warm, urbanized, low-altitude areas than in cold, high-altitude areas where human population density is low. [source] Dependence of broad-scale geographical variation in fleshy-fruited plant species richness on disperser bird species richnessGLOBAL ECOLOGY, Issue 4 2004Ana L. Márquez ABSTRACT Aim, We analysed the interdependence of avian frugivore- and fruited plant-species richness at the scale of major river basins across Europe, taking into account several environmental factors along different spatial gradients. Location, Continental Europe and the British Isles. Methods, We focused on wintering birds and autumn/winter fruiting plants, and used major river basins as geographical units and Structural Equation Modelling as the principal analytical tool. Results, The statistical influence of disperser species richness on fleshy-fruited plant species richness is roughly double that of the reverse. Broad-scale variation in frugivore richness is more dependent on environmental factors than on fruited plant richness. However, the influence of disperser richness on plant richness is four times higher than the influence of environmental factors. Environmental influences on both birds and plants are greater than purely spatial influences. Main conclusions, Our results are interpreted as indicating that biotic dispersal of fruits strongly affects broad-scale geographical trends of fleshy-fruited plant species richness, whereas richness of fruited plants moderately affects frugivore richness. [source] |