Plant Population Size (plant + population_size)

Distribution by Scientific Domains


Selected Abstracts


Susceptibility of Common and Rare Plant Species to the Genetic Consequences of Habitat Fragmentation

CONSERVATION BIOLOGY, Issue 3 2007
OLIVIER HONNAY
diversidad genética; endogamia; fragmentación de hábitat; sistema reproductivo; tamaño poblacional Abstract:,Small plant populations are more prone to extinction due to the loss of genetic variation through random genetic drift, increased selfing, and mating among related individuals. To date, most researchers dealing with genetic erosion in fragmented plant populations have focused on threatened or rare species. We raise the question whether common plant species are as susceptible to habitat fragmentation as rare species. We conducted a formal meta-analysis of habitat fragmentation studies that reported both population size and population genetic diversity. We estimated the overall weighted mean and variance of the correlation coefficients among four different measures of genetic diversity and plant population size. We then tested whether rarity, mating system, and plant longevity are potential moderators of the relationship between population size and genetic diversity. Mean gene diversity, percent polymorphic loci, and allelic richness across studies were positively and highly significantly correlated with population size, whereas no significant relationship was found between population size and the inbreeding coefficient. Genetic diversity of self-compatible species was less affected by decreasing population size than that of obligate outcrossing and self-compatible but mainly outcrossing species. Longevity did not affect the population genetic response to fragmentation. Our most important finding, however, was that common species were as, or more, susceptible to the population genetic consequences of habitat fragmentation than rare species, even when historically or naturally rare species were excluded from the analysis. These results are dramatic in that many more plant species than previously assumed may be vulnerable to genetic erosion and loss of genetic diversity as a result of ongoing fragmentation processes. This implies that many fragmented habitats have become unable to support plant populations that are large enough to maintain a mutation-drift balance and that occupied habitat fragments have become too isolated to allow sufficient gene flow to enable replenishment of lost alleles. Resumen:,Las poblaciones pequeñas de plantas son más propensas a la extinción debido a la pérdida de variación genética por medio de la deriva génica aleatoria, el incremento de autogamia y la reproducción entre individuos emparentados. A la fecha, la mayoría de los investigadores que trabajan con erosión genética en poblaciones fragmentadas de plantas se han enfocado en las especies amenazadas o raras. Cuestionamos si las especies de plantas comunes son tan susceptibles a la fragmentación del hábitat como las especies raras. Realizamos un meta análisis formal de estudios de fragmentación que reportaron tanto tamaño poblacional como diversidad genética. Estimamos la media general ponderada y la varianza de los coeficientes de correlación entre cuatro medidas de diversidad genética y de tamaño poblacional de las plantas. Posteriormente probamos si la rareza, el sistema reproductivo y la longevidad de la planta son moderadores potenciales de la relación entre el tamaño poblacional y la diversidad genética. La diversidad genética promedio, el porcentaje de loci polimórficos y la riqueza alélica en los estudios tuvieron una correlación positiva y altamente significativa con el tamaño poblacional, mientras que no encontramos relación significativa entre el tamaño poblacional y el coeficiente de endogamia. La diversidad genética de especies auto compatibles fue menos afectada por la reducción en el tamaño poblacional que la de especies exogámicas obligadas y especies auto compatibles, pero principalmente exogámicas. La longevidad no afectó la respuesta genética de la población a la fragmentación. Sin embargo, nuestro hallazgo más importante fue que las especies comunes fueron tan, o más, susceptibles a las consecuencias genéticas de la fragmentación del hábitat que las especies raras, aun cuando las especies histórica o naturalmente raras fueron excluidas del análisis. Estos resultados son dramáticos porque muchas especies más pueden ser vulnerables a la erosión genética y a la pérdida de diversidad genética como consecuencia de los procesos de fragmentación que lo se asumía previamente. Esto implica que muchos hábitats fragmentados han perdido la capacidad para soportar poblaciones de plantas lo suficientemente grandes para mantener un equilibrio mutación-deriva y que los fragmentos de hábitat ocupados están tan aislados que el flujo génico es insuficiente para permitir la reposición de alelos perdidos. [source]


Approaches for testing herbivore effects on plant population dynamics

JOURNAL OF APPLIED ECOLOGY, Issue 5 2006
STACEY L. HALPERN
Summary 1As plant invasions pose one of the greatest threats to biodiversity, it is critical to improve both our understanding of invasiveness and strategies for control. Much research into plant invasions and their management, including biological control, assumes strong demographic effects by natural enemies, including herbivores. However, the importance of natural enemies in the regulation of plant populations remains controversial: some ecologists contend that they rarely affect plant populations, and others that they can strongly limit plant population sizes. 2We briefly review the conflicting views and suggest that new approaches to gather and analyse data are needed before the effects of natural enemies on plant populations can be fully characterized. 3We outline experimental and analytical approaches that incorporate density dependence into population models and thus provide a more complete test of the long-term effects of natural enemies on plant populations. We also introduce new methods for obtaining stochastic estimates of equilibrium density, which will provide a key test of enemy effects on plant population size. 4Synthesis and applications. Designing effective strategies for invasive plant management requires information about the factors that limit plant population size. Together, the experiments and analyses we describe measure more clearly how natural enemies influence plant population dynamics. They will provide an important tool in evaluating the role of enemy release in plant invasions and for predicting the potential success of biological control. Such information should help to prioritize strategies that are most likely to control invasive plants effectively and will contribute to risk assessment when considering the release of non-native natural enemies as biological control agents. [source]


Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach

JOURNAL OF ECOLOGY, Issue 1 2010
Jens Dauber
Summary 1.,Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2.,A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation. 3.,We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4.,We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5.,Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant,pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats. [source]


Approaches for testing herbivore effects on plant population dynamics

JOURNAL OF APPLIED ECOLOGY, Issue 5 2006
STACEY L. HALPERN
Summary 1As plant invasions pose one of the greatest threats to biodiversity, it is critical to improve both our understanding of invasiveness and strategies for control. Much research into plant invasions and their management, including biological control, assumes strong demographic effects by natural enemies, including herbivores. However, the importance of natural enemies in the regulation of plant populations remains controversial: some ecologists contend that they rarely affect plant populations, and others that they can strongly limit plant population sizes. 2We briefly review the conflicting views and suggest that new approaches to gather and analyse data are needed before the effects of natural enemies on plant populations can be fully characterized. 3We outline experimental and analytical approaches that incorporate density dependence into population models and thus provide a more complete test of the long-term effects of natural enemies on plant populations. We also introduce new methods for obtaining stochastic estimates of equilibrium density, which will provide a key test of enemy effects on plant population size. 4Synthesis and applications. Designing effective strategies for invasive plant management requires information about the factors that limit plant population size. Together, the experiments and analyses we describe measure more clearly how natural enemies influence plant population dynamics. They will provide an important tool in evaluating the role of enemy release in plant invasions and for predicting the potential success of biological control. Such information should help to prioritize strategies that are most likely to control invasive plants effectively and will contribute to risk assessment when considering the release of non-native natural enemies as biological control agents. [source]


Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach

JOURNAL OF ECOLOGY, Issue 1 2010
Jens Dauber
Summary 1.,Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2.,A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation. 3.,We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4.,We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5.,Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant,pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats. [source]