Plant Polyphenols (plant + polyphenol)

Distribution by Scientific Domains


Selected Abstracts


Inhibition of CYP3A-mediated oxidation in human hepatic microsomes by the dietary derived complex phenol, gallic acid

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2002
Ieva Stupans
Plant polyphenols, such as gallic acid, have been reported to have a range of biological activities including antimutagenic effects. Previously, we reported that gallic acid (3,4,5-trihydroxy-benzoic acid), an agent found in wine and tea, inhibits androstenedione 6,-hydroxylase activity (Ki 70 ,M), a cytochrome P450 (CYP3A) marker in human liver microsomes. The preincubation of gallic acid (100 ,M) with human liver microsomes in the absence of NADPH, as compared with the presence of NADPH, before assay of androstenedione 6,-hydroxylase activity significantly increased the inhibitory effects of the gallic acid (0.03 ± 0.03 nmol (mg microsomal protein),1 min,1 compared with 0.20 ± 0.06 nmol (mg microsomal protein),1 min,1 (P< 0.05)). The antioxidant ascorbic acid and the radical scavenger glutathione prevented this observed increase in inhibition. Removal of gallic acid-derived products from the incubation completely restored CYP3A activity. In contrast, the activities of CYP1A and CYP2E, and non-CYP mediated reductive microsomal 17,-hydroxysteroid dehydrogenase activity were refractory to inhibition by gallic acid. [source]


Modulatory potential of ellagic acid, a natural plant polyphenol on altered lipid profile and lipid peroxidation status during alcohol-induced toxicity: A pathohistological study

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 2 2008
Nagarajan Devipriya
Abstract Polyphenol-rich dietary foodstuffs, consumed as an integral part of vegetables, fruits, and beverages have attracted attention due to their antioxidant and anticancer properties. Ellagic acid (EA), a polyphenolic compound widely distributed in fruits and nuts, has been reported to scavenge free radicals and inhibit lipid peroxidation. Chronic consumption of alcohol potentially results in serious illness including hepatitis, fatty liver, hypertriglyceridemia, and cirrhosis. A little is known about the influence of EA on alcohol toxicity in vivo. Accordingly, in the present study, we have evaluated the protective effects of EA on lipid peroxidation and lipid levels during alcohol-induced toxicity in experimental rats. Forty female albino Wistar rats, which were weighing between 150,170 g were used for the study. The toxicity was induced by administration of 20% alcohol orally (7.9 g/kg body wt.) for 45 days. Rats were treated with EA at three different doses (30, 60, and 90 mg/kg body wt.) via intragastric intubations together with alcohol. At the end of experimental duration, liver marker enzymes (i.e., aspartate transaminase, alanine transaminase), lipid peroxidative indices (i.e., thiobarbituriacid reactive substances and hydroperoxides) in plasma, and lipid levels (i.e., cholesterol, free fatty acids, triglycerides and phospholipids) in tissues were analyzed to evaluate the antiperoxidative and antilipidemic effects of EA. Liver marker enzymes, lipid peroxidative indices, and lipid levels, i.e., cholesterol, triglycerides and free fatty acids, were significantly increased whereas phospholipid levels were significantly decreased in the alcohol-administered group. EA treatment resulted in positive modulation of marker enzymes, peroxidative indices, and lipid levels. EA at the dose of 60 mg/kg body wt. was found to be more effective when compared to the other two doses. Histological changes observed were also inconsistent with the biochemical parameters. Our study suggests that EA exerts beneficial effects at the dosage of 60 mg/kg body wt. against alcohol-induced damage, and it can be used as a potential drug for the treatment of alcohol-abuse ailments in the near future. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:101,112, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20226 [source]


Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status

MOLECULAR CARCINOGENESIS, Issue 3 2007
Sahar Al-Ayyoubi
Abstract Gallotannin (GT), a plant polyphenol, has shown anticarcinogenic activities in several animal models including colon cancer. In our previous study, we showed that GT inhibits 1,2-dimethylhydrazine-induced colonic aberrant crypt foci and tumors in Balb/c mice, thus supporting a role for GT as a chemopreventive agent in colon cancer. However, at the molecular level, GT's mechanism of chemoprevention is still unclear. In this study, we aim at identifying GT's potential molecular mechanisms of action in in vitro studies. We show that GT differentially inhibits the growth of two isogenic HCT-116 (p53+/+, p53,/,) human colon cancer cells versus normal human intestinal epithelial cells (FHs 74Int). DNA flow cytometric analysis showed that GT induced S-phase arrest in both HCT-116 cell lines. Cell-cycle arrest in p53 (+/+) cells was associated with an increase in p53 protein levels and p21 transcript and protein levels. The inhibition of cell-cycle progression of HCT-116 p53 (+/+) cells by GT correlated with a reduction in the protein levels of cyclin D1, pRb, and the Bax/Bcl-2 ratio. Although GT did not induce apoptosis in p53 (+/+) cells, a significant induction of apoptosis was observed in p53 (,/,) cells as shown by TUNEL staining and flow cytometry analysis. Apoptosis induction in p53 (,/,) cells was associated with a significant increase in Bax/Bcl-2 protein levels. Our results demonstrate that GT inhibits the growth of HCT-116 colon cancer cells in a p53-independent manner but exhibits differential sensitivity to apoptosis induction in HCT-116 cells with distinct p53 status. © 2006 Wiley-Liss, Inc. [source]


Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2009
Patrudu S. Makena
Abstract Quercetin (QT) and Taxifolin (TF) are structurally similar plant polyphenols. Both have been reported to have therapeutic potential as anti-cancer drugs and antioxidants. Mutagenic effects of QT and TF were evaluated using Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA tester strains. Either in the presence or absence of S9 mix, QT was mutagenic to TA102 and WP2 uvrA. However, the mutagenicity of QT was significantly enhanced in the presence of S9 mix. Likewise, in the presence of Iron (Fe2+) and NADPH generating system (NGS) and absence of S9 mix, QT induced significantly high mutations in both TA102 and WP-2 uvrA. Mutagenicity of QT decreased in both strains in the presence of Iron (Fe2+) or NGS alone. TF was not mutagenic in the presence or absence of S9 mix in both TA102 and WP-2 uvrA 2, regardless of the presence of iron or NGS. Incorporation of antioxidants (ascorbate, superoxide dismutase (SOD), catalase (CAT)) and/or iron chelators (desferroxamine (DF) and ethylenediamine-tetraacetate (EDTA)) in the test systems markedly decreased QT-induced mutations in both tester strains. These results suggest that QT but not TF, could induce mutations in the presence or absence of rat liver S9 or Iron (Fe2+) and NGS in both tester strains by redox cycling and Fenton reactions to produce oxygen free radicals. Our results indicate that a minor structural variation between the two plant polyphenols could elicit a marked difference in their genotoxicities. These results provide a basis for further study into the potential use of QT in combination with iron supplements. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source]


Reduction of ciclosporin and tacrolimus nephrotoxicity by plant polyphenols

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2006
Zhi Zhong
The immunosuppressants ciclosporin (cyclosporin A, CsA) and tacrolimus can cause severe nephrotoxicity. Since CsA increases free radical formation, this study investigated whether an extract from Camellia sinensis, which contains several polyphenolic free radical scavengers, could prevent nephrotoxicity caused by CsA and tacrolimus. Rats were fed powdered diet containing polyphenolic extract (0-0.1%) starting 3 days before CsA or tacrolimus. Free radicals were trapped with ,-(4-pyridyl-1-oxide)- N - tert -butylnitrone (POBN) and measured using an electron spin resonance spectrometer. Both CsA and tacrolimus decreased glomerular filtration rates (GFR) and caused tubular atrophy, vacuolization and calcification and arteriolar hyalinosis, effects that were blunted by treatment with dietary polyphenols. Moreover, CsA and tacrolimus increased POBN/radical adducts in urine nearly 3.5 fold. Hydroxyl radicals attack dimethyl sulfoxide (DMSO) to produce a methyl radical fragment. Administration of CsA or tacrolimus with 12C-DMSO produced a 6-line spectrum, while CsA or tacrolimus given with 13C-DMSO produced a 12-line ESR spectrum, confirming formation of hydroxyl radicals. 4-Hydroxynonenal (4-HNE), a product of lipid peroxidation, accumulated in proximal and distal tubules after CsA or tacrolimus treatment. ESR changes and 4-HNE formation were largely blocked by polyphenols. Taken together, these results demonstrate that both CsA and tacrolimus stimulate free radical production in the kidney, most likely in tubular cells, and that polyphenols minimize nephrotoxicity by scavenging free radicals. [source]