Plant Nutrition (plant + nutrition)

Distribution by Scientific Domains


Selected Abstracts


Trade-off in oviposition strategy: choosing poor quality host plants reduces mortality from natural enemies for a salt marsh planthopper

ECOLOGICAL ENTOMOLOGY, Issue 3 2006
DANIEL C. MOON
Abstract 1.,Both host plant nutrition and mortality from natural enemies have been predicted to significantly impact host plant selection and oviposition behaviour of phytophagous insects. It is unclear, however, if oviposition decisions maximise fitness. 2.,This study examined whether the salt marsh planthopper Pissonotus quadripustulatus prefers higher quality host plants for oviposition, and if oviposition decisions are made so as to minimise mortality at the egg stage. 3.,A controlled laboratory experiment and 4 years of field data were used to assess the rates of planthopper oviposition on higher quality ,green' and lower quality ,woody' stems of the host plant Borrichia frutescens. The numbers and percentages of healthy eggs and eggs that were killed by parasitoids or the host plant were recorded. 4.,In all years, including the laboratory experiment, Pissonotus planthoppers laid more eggs on lower quality woody stems than on higher quality green stems. While host plant related egg mortality was higher in woody stems, the percentage of eggs parasitised was much greater in green stems. This resulted in a lower total mortality of eggs on woody stems. 5.,The results of this study demonstrate that, although Pissonotus prefers lower quality host plants for oviposition, this actually increases fitness. These data seem to support the enemy free space hypothesis, and suggest that for phytophagous insects that experience the majority of mortality in the egg stage, oviposition choices may be made such that mortality is minimised. [source]


Arbuscular mycorrhizal propagule densities respond rapidly to ponderosa pine restoration treatments

JOURNAL OF APPLIED ECOLOGY, Issue 1 2003
Julie E. Korb
Summary 1Mycorrhizae form a critical link between above-ground plants and the soil system by influencing plant nutrition, nutrient cycling and soil structure. Understanding how mycorrhizae respond to disturbances may lead to important advances in interpreting above-ground plant recovery. 2The inoculum potential for arbuscular mycorrhizae (AM) and ectomycorrhizal (EM) fungi was investigated in thinned-only, thinned and prescribed burned (both restoration treatments) and unthinned and unburned control stands in northern Arizona ponderosa pine forests. The relationships between mycorrhizal fungal propagule densities and plant community and soil properties were quantified. 3The relative amount of infective propagules of AM fungi was significantly higher in samples collected from both restoration treatments than their paired controls (unthinned and unburned stands). In contrast, the same restoration treatments had no significant effect on the relative amount of infective propagules of EM fungi. 4The relative amount of infective propagules of AM fungi was significantly positively correlated with graminoid cover and herbaceous understorey species richness and negatively correlated with overstorey tree canopy cover and litter cover. 5Synthesis and applications. These results indicate that population densities of AM fungi can rapidly increase following restoration treatments in northern Arizona ponderosa pine forests. This has important implications for restoring the herbaceous understorey of these forests because most understorey plants depend on AM associations for normal growth. These results also can be applied to other ecosystems that are in a state of restoration or where the role of fire is just beginning to be understood. [source]


Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2010
B. Sashidhar
Summary Microbial biodiversity in the soil plays a significant role in metabolism of complex molecules, helps in plant nutrition and offers countless new genes, biochemical pathways, antibiotics and other metabolites, useful molecules for agronomic productivity. Phosphorus being the second most important macro-nutrient required by the plants, next to nitrogen, its availability in soluble form in the soils is of great importance in agriculture. Microbes present in the soil employ different strategies to make use of unavailable forms of phosphate and in turn also help plants making phosphate available for plant use. Azotobacter, a free-living nitrogen fixer, is known to increase the fertility of the soil and in turn the productivity of different crops. The glucose dehydrogenase gene, the first enzyme in the direct oxidation pathway, contributes significantly to mineral phosphate solubilization ability in several Gram-negative bacteria. It is possible to enhance further the biofertilizer potential of plant growth-promoting rhizobacteria by introducing the genes involved mineral phosphate solubilization without affecting their ability to fix nitrogen or produce phytohormones for dual benefit to agricultural crops. Glucose dehydrogenases from Gram-negative bacteria can be engineered to improve their ability to use different substrates, function at higher temperatures and EDTA tolerance, etc., through site-directed mutagenesis. [source]


Ant nest location, soil nutrients and nutrient uptake by ant-associated plants: does extrafloral nectar attract ant nests and thereby enhance plant nutrition?

JOURNAL OF ECOLOGY, Issue 3 2010
Diane Wagner
Summary 1. As central place foragers, ants accumulate organic debris near their nests. Consequently, soil nutrient stocks are often enriched near the nest site. We investigated the hypothesis that plant-derived food sources, such as extrafloral nectar (EFN), can encourage soil-dwelling ant colonies to nest near the plant, thereby inadvertently providing the plant with an additional source of mineral nutrients. The study focused on a population of Acacia constricta, a North American shrub bearing EFNs. 2. Several lines of evidence supported the notion that food rewards drew ant nests close to A. constricta plants. Firstly, ant species that visit EFNs nested significantly closer to A. constricta plants than would be expected by chance, whereas this was not the case for two ant species that do not visit EFNs. Secondly, A. constricta plants with an ant nest occurring naturally underneath the canopy had greater foliar volume, more EFNs per leaf and more EFNs per cm of leaf rachis than plants lacking an ant nest under the canopy. Thirdly, experimental supplementation of the nectar resources on acacias led to the establishment of significantly more new nests near the plant, relative to controls. However, nectar supplementation did not affect acacia seed production within the year of the study. 3. Soil from the nests of three, EFN-visiting ant species contained higher average stocks of most mineral nutrients than nearby soils outside the influence of the nest. 4. To test whether A. constricta can assimilate the nutrients in ant nests, we fed 15N-labelled food to Dorymyrmex sp. (smithi complex) workers nesting near acacias. Twenty-four days later, the leaves of acacias with an experimentally fed ant colony under the canopy contained significantly higher 15N and %N than acacias without a nest under the canopy, indicating that acacias assimilated and benefited from nutrients derived from ants. 5.Synthesis. The results indicate that nectar resources can attract the nests of some ant species, and that plants may benefit from access to soil nutrients derived from ant nests. Our data support the hypothesis that EFNs may confer nutritive, as well as protective, benefits. [source]


Influence of sulphur plant nutrition on oviposition and larval performance of the cabbage root fly

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2005
Cristina Marazzi
Abstract 1,Oilseed rape plants (Brassica napus) (L.) (Brassicaceae) were grown under different levels of sulphur supply and tested for the oviposition preference and larval performance of cabbage root flies Delia radicum (L.) (Diptera: Anthomyiidae). 2,Adult females laid more than three-fold as many eggs on control Sn (normal field concentration) than on sulphur-free S0 plants. By contrast, no significant difference was observed between control and double normal concentration (S+) plants. 3,The larval performance was evaluated using three additional, intermediate sulphur levels between S0 and Sn, and the plants were infected with equal numbers of eggs. The percentage pupation at the end of larval feeding ranged from 6% (S0) to 32% (Sn or S+) and the average number of pupae, or of emerging flies, was significantly correlated with sulphur application. 4,The weight of emerging males and females was correlated with plant sulphur supply. 5,The duration of development from eggs to adult emergence was approximately 2 days longer in females than in males. Females originating from plants with a normal or higher sulphur supply tended to emerge 1,2 days earlier. [source]


Drought and salinity: A comparison of their effects on mineral nutrition of plants

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2005
Yuncai Hu
Abstract The increasing frequency of dry periods in many regions of the world and the problems associated with salinity in irrigated areas frequently result in the consecutive occurrence of drought and salinity on cultivated land. Currently, 50% of all irrigation schemes are affected by salinity. Nutrient disturbances under both drought and salinity reduce plant growth by affecting the availability, transport, and partitioning of nutrients. However, drought and salinity can differentially affect the mineral nutrition of plants. Salinity may cause nutrient deficiencies or imbalances, due to the competition of Na+ and Cl, with nutrients such as K+, Ca2+, and NO. Drought, on the other hand, can affect nutrient uptake and impair acropetal translocation of some nutrients. Despite contradictory reports on the effects of nutrient supply on plant growth under saline or drought conditions, it is generally accepted that an increased nutrient supply will not improve plant growth when the nutrient is already present in sufficient amounts in the soil and when the drought or salt stress is severe. A better understanding of the role of mineral nutrients in plant resistance to drought and salinity will contribute to an improved fertilizer management in arid and semi-arid areas and in regions suffering from temporary drought. This paper reviews the current state of knowledge on plant nutrition under drought and salinity conditions. Specific topics include: (1) the effects of drought and salt stress on nutrient availability, uptake, transport, and accumulation in plants, (2) the interactions between nutrient supply and drought- or salt-stress response, and (3) means to increase nutrient availability under drought and salinity by breeding and molecular approaches. Trockenstress und Salzstress , Vergleich der Auswirkungen auf die mineralische Ernährung von Pflanzen Eine Zunahme von Trockenperioden in vielen Ländern der Welt und assoziierte Probleme der Versalzung in bewässerten Gebieten führen häufig zu gleichzeitigem Auftreten von Trockenheit und Salinität. Gegenwärtig sind weltweit ungefähr 50 % aller Bewässerungsflächen durch Salinität beeinträchtigt. Nährstoffstörungen bei Trocken- und Salzstress beeinträchtigen die Verfügbarkeit, den Transport und die Verteilung von Nährelementen in der Pflanze und reduzieren somit das Pflanzenwachstum. Trocken- und Salzstress können sich jedoch unterschiedlich auf die Nährstoffversorgung der Pflanzen auswirken. Salinität kann aufgrund der Konkurrenz zwischen Na+ bzw. Cl, und Nährelementen wie K+, Ca2+ und NO Nährstoffmängel oder -ungleichgewichte in den Pflanzen verursachen. Trockenstress kann sowohl die Nährstoffaufnahme als auch den akropetalen Transport einiger Elemente beeinträchtigen. Trotz kontroverser Schlussfolgerungen in der Literatur hinsichtlich der Wechselbeziehungen von Nährstoffangebot und Trocken- bzw. Salzstress auf das Pflanzenwachstum ist allgemein akzeptiert, dass Nährstoffzufuhr das Pflanzenwachstum nicht verbessert, wenn ausreichend Nährstoffe im Boden verfügbar sind oder bei stark ausgeprägter Trockenheit oder Salinität. Ein besseres Verständnis der Rolle von Mineralstoffen in der Toleranz von Pflanzen gegenüber Trocken- oder Salzstress dürfte gerade in ariden und semi-ariden Gebieten sowie in Regionen, die unter periodischer Trockenheit leiden, zu verbesserten Düngestrategien beitragen. In der vorliegenden Arbeit wird der gegenwärtige Kenntnisstand der mineralischen Ernährung bei Trockenheit und Salinität diskutiert. Schwerpunkte der Betrachtungen sind (1) die Auswirkungen von Trockenheit und Salzstress auf die Verfügbarkeit, die Aufnahme, den Transport und die Anreicherung von Nährelementen in der Pflanze, (2) Wechselbeziehungen zwischen dem Nährstoffangebot und Trockenheit oder Salinität sowie (3) Maßnahmen zur Verbesserung der Nährstoffverfügbarkeit bei Trockenheit und Salzstress mittels züchterischer und molekularbiologischer Ansätze. [source]


Soil nutrient supply and biomass production in a mixed forest on a skeleton-rich soil and an adjacent beech forest

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2002
Dirk Hölscher
Abstract In the natural forest communities of Central Europe, beech (Fagus sylvatica L.) predominates in the tree layer over a wide range of soil conditions. An exception with respect to the dominance of beech are skeleton-rich soils such as screes where up to 10 broad-leaved trees co-exist. In such a Tilia-Fagus-Fraxinus-Acer-Ulmus forest and an adjacent mono-specific beech forest we compared (1) soil nutrient pools and net nitrogen mineralization rates, (2) leaf nutrient levels, and (3) leaf litter production and stem increment rates in order to evaluate the relationship between soil conditions and tree species composition. In the mixed forest only a small quantity of fine earth was present (35 g l,1) which was distributed in patches between basalt stones; whereas a significantly higher (P < 0.05) soil quantity (182 g l,1) was found in the beech forest. In the soil patches of the mixed forest C and N concentrations and also concentrations of exchangeable nutrients (K, Ca, Mg) were significantly higher than in the beech forest. Net N mineralization rates on soil dry weight basis in the mixed forest exceeded those in the beech forest by a factor of 2.6. Due to differences in fine earth and stone contents, the volume related soil K pool and the N mineralization rate were lower in the mixed forest (52 kg N ha,1 yr,1, 0,10 cm depth) than in the beech forest (105 kg N ha,1 yr,1). The leaf N and K concentrations of the beech trees did not differ significantly between the stands, which suggests that plant nutrition was not impaired. In the mixed forest leaf litter fall (11,%) and the increment rate of stem basal area (52,%) were lower than in the beech forest. Thus, compared with the adjacent beech forest, the mixed forest stand was characterized by a low volume of patchy distributed nutrient-rich soil, a lower volume related K pool and N mineralization rate, and low rates of stem increment. Together with other factors such as water availability these patterns may contribute to an explanation of the diverse tree species composition on Central European screes. Bodennährstoffangebot und Biomasseproduktion in einem Mischwald auf einem stark skeletthaltigen Standort und in einem benachbarten Buchenwald In den natürlichen Waldgesellschaften Mitteleuropas dominiert die Buche (Fagus sylvatica L.) über ein weites Spektrum an bodenchemischen Standortsbedingungen. Eine Ausnahme in Bezug auf die Buchendominaz bilden stark skeletthaltige Standorte, wie etwa Blockhalden, wo bis zu 10 Laubbaumarten gemeinsam vorkommen. In solch einem Tilia-Fagus-Fraxinus-Acer-Ulmus -Wald und einem benachbarten Buchenreinbestand haben wir (1) die Bodennährstoffvorräte und Stickstoffmineralisationsraten, (2) den Blattnährstoffstatus und (3) die Blattproduktion und die Stammzuwachsraten vergleichend untersucht, um die Beziehung zwischen den Bodenbedingungen und der Baumartenzusammensetzung zu charakterisieren. In dem Mischwald fanden wir nur eine geringe Menge an Feinboden (35 g l,1), die sich in Taschen zwischen den Basaltsteinen befand, wohingegen ein signifikant (P < 0.05) höherer Gehalt an Feinboden (182 g l,1) in dem Buchenwald vorhanden war. In den Bodentaschen des Mischwaldes waren die C- und N-Konzentrationen und auch die Konzentrationen an austauschbar gebundenem K, Ca und Mg signifikant höher als im Buchenwald. Die Netto-N-Mineralisation pro Gewichtseinheit im Mischwald überstieg diejenige im Buchenwald um den Faktor 2,6. Wegen der unterschiedlichen Anteile an Feinboden und Skelett waren der volumenbezogene K-Vorrat und die volumenbezogene N-Mineralisationsrate im Mischwald (52 kg N ha,1 yr,1, 0,10 cm Tiefe) geringer als im Buchenwald (105 kg N ha,1 yr,1). Die Blattnährstoffgehalte von Buchen unterschieden sich zwischen den beiden Beständen nicht signifikant, was darauf hinweist, dass die Pflanzenernährung nicht beeinträchtigt war. Der herbstliche Blattstreufall (11,%) und die Zuwachsraten der Stammquerflächen (52,%) waren im Mischwald geringer als im Buchenwald. Im Vergleich mit dem benachbarten Buchenwald wies der Mischwald somit einen geringen Gehalt an sehr ungleichmäßig verteiltem, nährstoffreichen Boden, geringere volumenbezogene K-Vorräte und N-Mineralisationsraten und geringe Stammzuwächse auf. Gemeinsam mit anderen Faktoren, wie etwa der Wasserverfügbarkeit, können diese Muster zu einer Erklärung der Baumartenvielfalt auf mitteleuropäischen Blockstandorten beitragen. [source]


Role of mineral nutrition in minimizing cadmium accumulation by plants

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 6 2010
Nadeem Sarwar
Abstract Cadmium (Cd) is a highly toxic heavy metal for both plants and animals. The presence of Cd in agricultural soils is of great concern regarding its entry into the food chain. Cadmium enters into the soil,plant environment mainly through anthropogenic activities. Compounds of Cd are more soluble than other heavy metals, so it is more available and readily taken up by plants and accumulates in different edible plant parts through which it enters the food chain. A number of approaches are being used to minimize the entry of Cd into the food chain. Proper plant nutrition is one of the good strategies to alleviate the damaging effects of Cd on plants and to avoid its entry into the food chain. Plant nutrients play a very important role in developing plant tolerance to Cd toxicity and thus, low Cd accumulation in different plant parts. In this report, the role of some macronutrients (nitrogen, phosphorus, sulfur and calcium), micronutrients (zinc, iron and manganese), and silicon (a beneficial nutrient) has been discussed in detail as to how these nutrients play their role in decreasing Cd uptake and accumulation in crop plants. Copyright © 2010 Society of Chemical Industry [source]