Plant Nitrogen (plant + nitrogen)

Distribution by Scientific Domains

Terms modified by Plant Nitrogen

  • plant nitrogen concentration

  • Selected Abstracts


    Nitrogen fertilization effects on Myzus persicae aphid dynamics on peach: vegetative growth allocation or chemical defence?

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2010
    Marie-Hélène Sauge
    Abstract Plant nitrogen (N) fertilization is a common cropping practice that is expected to serve as a pest management tool. Its effects on the dynamics of the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) were examined on young peach [Prunus persica (L.) Batsch (Rosaceae)] trees grown under five N treatments, ranging from N shortage to supra-optimal supply for growth. Aphid population increased over time at the three intermediate N levels. It remained stable at the lowest N level and decreased at the highest N level. Four weeks after the start of infestation, the number of aphids displayed a parabolic response to N level. The relationships between N status and parameters of plant vegetative growth (stem diameter) or biomass allocation (lateral-total leaf area and root-shoot ratio) were consistent with responses proposed by models of adaptive plasticity in resource allocation patterns. However, the variation in plant growth predicted aphid population dynamics only partially. Whereas aphid number was positively correlated with plant N status and vegetative growth up to the intermediate N level, it was negatively correlated with plant N status above this level, but not with vegetative growth. The concentrations of primary and secondary (plant defence-related) metabolites in the plant shoots were modified by N treatments: amino acids (main nutritional resource of aphids) and prunasin increased, whereas chlorogenic acid decreased with increasing N availability. Constitutive changes in plant chemistry in response to N fertilization could not directly explain the reduced aphid performance for the highest N level. Nevertheless, the indirect effect of N on the induction of plant defence compounds by aphid feeding warrants further investigation. The study focuses on the feasibility of handling N fertilization to control M. persicae in orchards, but findings may also be relevant for our understanding of the physiological relationships between the host's nutritional status and the requirements of the insect. [source]


    Effect of cotton nitrogen fertilization on Bemisia argentifolii populations and honeydew production

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2001
    J.L. Bi
    Abstract The impact of nitrogen fertilization on cotton plants, Gossypium hirsutum L., silverleaf whitefly, Bemisia argentifolii Bellows & Perring, population dynamics and honeydew production were investigated in the field at Riverside, California, USA. Treatments were soil applications of 0, 112, 168 and 224 kg nitrogen per hectare, and a soil application of 112 kg of nitrogen plus a foliar application of 17 kg nitrogen per hectare. Increased numbers of both adult and immature whiteflies occurred during population peaks with increasing amounts of applied nitrogen. Higher numbers of whiteflies resulted in increased levels of honeydew. Increasing plant nitrogen also enhanced cotton foliar photosynthetic rates and stomatal conductance, and altered concentrations of glucose, fructose and sucrose in cotton petioles. However, at our treatment levels nitrogen had no effect on seedcotton yield. Petiole glucose levels were significantly correlated with numbers of whitefly adults on leaves during their peak populations. Significant correlations between whitefly numbers and other cotton physiological parameters occurred on only a few sampling dates. [source]


    Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae

    GLOBAL CHANGE BIOLOGY, Issue 6 2007
    XIN CHEN
    Abstract Both endophytic and mycorrhizal fungi interact with plants to form symbiosis in which the fungal partners rely on, and sometimes compete for, carbon (C) sources from their hosts. Changes in photosynthesis in host plants caused by atmospheric carbon dioxide (CO2) enrichment may, therefore, influence those mutualistic interactions, potentially modifying plant nutrient acquisition and interactions with other coexisting plant species. However, few studies have so far examined the interactive controls of endophytes and mycorrhizae over plant responses to atmospheric CO2 enrichment. Using Festuca arundinacea Schreb and Plantago lanceolata L. as model plants, we examined the effects of elevated CO2 on mycorrhizae and endophyte (Neotyphodium coenophialum) and plant nitrogen (N) acquisition in two microcosm experiments, and determined whether and how mycorrhizae and endophytes mediate interactions between their host plant species. Endophyte-free and endophyte-infected F. arundinacea varieties, P. lanceolata L., and their combination with or without mycorrhizal inocula were grown under ambient (400 ,mol mol,1) and elevated CO2 (ambient + 330 ,mol mol,1). A 15N isotope tracer was used to quantify the mycorrhiza-mediated plant acquisition of N from soil. Elevated CO2 stimulated the growth of P. lanceolata greater than F. arundinacea, increasing the shoot biomass ratio of P. lanceolata to F. arundinacea in all the mixtures. Elevated CO2 also increased mycorrhizal root colonization of P. lanceolata, but had no impact on that of F. arundinacea. Mycorrhizae increased the shoot biomass ratio of P. lanceolata to F. arundinacea under elevated CO2. In the absence of endophytes, both elevated CO2 and mycorrhizae enhanced 15N and total N uptake of P. lanceolata but had either no or even negative effects on N acquisition of F. arundinacea, altering N distribution between these two species in the mixture. The presence of endophytes in F. arundinacea, however, reduced the CO2 effect on N acquisition in P. lanceolata, although it did not affect growth responses of their host plants to elevated CO2. These results suggest that mycorrhizal fungi and endophytes might interactively affect the responses of their host plants and their coexisting species to elevated CO2. [source]


    N2 fixation by Acacia species increases under elevated atmospheric CO2

    PLANT CELL & ENVIRONMENT, Issue 4 2002
    M. Schortemeyer
    Abstract In the present study the effect of elevated CO2 on growth and nitrogen fixation of seven Australian Acacia species was investigated. Two species from semi-arid environments in central Australia (Acacia aneura and A. tetragonophylla) and five species from temperate south-eastern Australia (Acacia irrorata, A. mearnsii, A. dealbata, A. implexa and A. melanoxylon) were grown for up to 148 d in controlled greenhouse conditions at either ambient (350 µmol mol,1) or elevated (700 µmol mol,1) CO2 concentrations. After establishment of nodules, the plants were completely dependent on symbiotic nitrogen fixation. Six out of seven species had greater relative growth rates and lower whole plant nitrogen concentrations under elevated versus normal CO2. Enhanced growth resulted in an increase in the amount of nitrogen fixed symbiotically for five of the species. In general, this was the consequence of lower whole-plant nitrogen concentrations, which equate to a larger plant and greater nodule mass for a given amount of nitrogen. Since the average amount of nitrogen fixed per unit nodule mass was unaltered by atmospheric CO2, more nitrogen could be fixed for a given amount of plant nitrogen. For three of the species, elevated CO2 increased the rate of nitrogen fixation per unit nodule mass and time, but this was completely offset by a reduction in nodule mass per unit plant mass. [source]