Plant Inputs (plant + input)

Distribution by Scientific Domains


Selected Abstracts


Non-diagonal MIMO QFT controller design reformulation

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 9 2009
Mario Garcia-Sanz
Abstract This paper presents a reformulation of the full-matrix quantitative feedback theory (QFT) robust control methodology for multiple-input,multiple-output (MIMO) plants with uncertainty. The new methodology includes a generalization of previous non-diagonal MIMO QFT techniques; avoiding former hypotheses of diagonal dominance; simplifying the calculations for the off-diagonal elements, and then the method itself; reformulating the classical matrix definition of MIMO specifications by designing a new set of loop-by-loop QFT bounds on the Nichols Chart, which establish necessary and sufficient conditions; giving explicit expressions to share the load among the loops of the MIMO system to achieve the matrix specifications; and all for stability, reference tracking, disturbance rejection at plant input and output, and noise attenuation problems. The new methodology is applied to the design of a MIMO controller for a spacecraft flying in formation in a low Earth orbit. Copyright © 2008 John Wiley & Sons, Ltd. [source]


HIGHER PLANT BIOMARKERS IN PALEOGENE CRUDE OILS FROM THE YUFUTSU OIL-AND GASFIELD AND OFFSHORE WILDCATS, JAPAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 4 2006
S. Yessalina
Geochemical investigation of Paleogene oils from the onshore Yufutsu oil- and gasfield, southern Hokkaido, and from two nearby offshore wells, revealed the presence of numerous biomarkers of higher plant origin. Biomarkers in the oils belong to different groups of both angiosperm and gymnosperm origin; they include bicyclic sesquiterpanes, diterpanes, and triterpanes and their aromatized counterparts, which suggests a terrestrial origin for the oils. The oils were characterized as having a high wax content, a low content of organosulphur compounds, a high pristane/phytane ratio, and a low C27/(C27+C29) sterane ratio. Although the oils from on- and offshore Southern Hokkaido are similar in their geochemical composition, notable differences were observed in the biomarker signature of both saturate and aromatic fractions. The oils from the offshore wells appeared to have a greater abundance of higher plant biomarkers compared to those from the Yufutsu field, suggesting an enrichment in higher plant components. Differences in biomarker fingerprint could not be linked to the maturity effect, since the oils appeared to be of similar maturity levels, corresponding to the late stage of the oil window (0.9,1.2%, Rc). The differences in the biomarker signatures between the oils from the Yufutsu field and the offshore wells are likely to be due to facies variations in source organic matter, resulting from differences in the quantity and quality of land plant input. [source]


Bulk organic ,13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin,

JOURNAL OF QUATERNARY SCIENCE, Issue 4 2005
Elizabeth A. V. Mackie
Abstract Microfossils in isolation basin sediments are frequently used to reconstruct sea-level change, but preservation problems and non-analogue situations can limit their usefulness. Here we investigate the potential of stable carbon isotopes (,13C) and C/N ratios from bulk organic matter, as an alternative proxy of salinity within isolation basin sediments from a basin in northwest Scotland. Within the Holocene sediment ,13C and C/N are determined largely by the mean weighted values of the predominant source of the organic material. Analysis of modern materials and comparison with the diatom record shows that the marine parts of the sequence are dominated by high ,13C and variable C/N. In the fresh water sequences the organic material is a mixture of both freshwater aquatic and terrestrial plant input that have relatively low ,13C and high C/N. The application of ,13C and C/N ratios in the studied basin in general follow the environmental change recorded by the diatoms and shows the potential of bulk organic matter in the investigation of salinity change in isolation basins. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Amino acid 15N in long-term bare fallow soils: influence of annual N fertilizer and manure applications

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2008
R. Bol
Summary Long-term dynamics of amino acids (AAs), from a bare fallow soil experiment (established in 1928 at INRA-Versailles, France), were examined in unamended control (Con) plots and plots treated with ammonium sulphate (Amsul), ammonium nitrate (Amnit), sodium nitrate (Nanit) or with animal manure (Man). Topsoil (0,25 cm) from 1929, 1963 and 1997 was analysed for C, N and 15N content and distribution of 18 amino acids recovered after acid hydrolysis with 6 m HCl. With time, soil N, C and AA content were reduced in Con, Amsul, Amnit and Nanit, but increased in Man. However, the absolute N loss was 3,11 times larger in Man than Nanit, Amsul, Amnit and Con, due to the much higher N annual inputs applied to Man. From 1929 to 1997 in Con, Amsul, Amnit and Nanit the whole soil and non-hydrolysable-N pool ,15N increased associated with the loss of N (indicative of Rayleigh 15N/14N fractionation). No ,15N change from 1929 to 1997 was found in the hydrolysable AA-N (HAN) pool. Fertilizer N inputs aided stabilization of soil AA-N, as AA half-life in the mineral N fertilizer treatments increased from 34 years in 1963 to 50 years in 1997. The ,15N values of alanine and leucine reflected both source input and 15N/14N fractionation effects in soils. The ,15N increase of ornithine (,6,) was similar to the whole soil. The ,15N change of phenylalanine in Con (decrease of 7,) was related to its proportional loss since 1929, whereas for Amsul, Amnit, Nanit and Man it was associated with isotope effects caused by the fertilizer inputs. However, the soil ,15N value of most individual amino acids (IAAs) did not significantly change over nearly 70 years, even with mineral or organic N inputs. We conclude for these bare fallow systems that: (i) ,15N changes in the whole soil and non-hydrolysable AA pool were solely driven by microbial processes and not by the nature of fertilizer inputs, and (ii) without plant inputs, the ,15N of the HAN pool and (most) IAAs may reflect the influence of plant,soil interactions from the previous (arable cropping) rather than present (fallow) land use on these soil ,15N values. [source]


Importance of rhizodeposition in the coupling of plant and microbial productivity

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2003
Eric Paterson
Summary Plant roots influence the biological, chemical and physical properties of rhizosphere soil. These effects are a consequence of their growth, their activity and the exudation of organic compounds from them. In natural ecosystems, the linkages between inputs of carbon from plants and microbial activity driven by these inputs are central to our understanding of nutrient cycling in soil and the productivity of these systems. This coupling of plant and microbial productivity is also of increasing importance in agriculture, where the shift towards low-input systems increases the dependence of plant production on nutrient cycling, as opposed to fertilizers. This review considers the processes by which plants can influence the cycling of nutrients in soil, and in particular the importance of organic inputs from roots in driving microbially mediated transformations of N. This coupling of plant inputs to the functioning of the microbial community is beneficial for acquisition of N by plants, particularly in low-input systems. This occurs through stimulation of microbes that produce exoenzymes that degrade organic matter, and by promoting cycling of N immobilized in the microbial biomass via predation by protozoa. Also, plants increase the cycling of N by changes in exudation in response to nitrogen supply around roots, and in response to browsing by herbivores. Plants can release compounds in exudates that directly affect the expression of genes in microbes, and this may be an important way of controlling their function to the benefit of the plant. [source]


Sources of plant-derived carbon and stability of organic matter in soil: implications for global change

GLOBAL CHANGE BIOLOGY, Issue 8 2009
SUSAN E. CROW
Abstract Alterations in forest productivity and changes in the relative proportion of above- and belowground biomass may have nonlinear effects on soil organic matter (SOM) storage. To study the influence of plant litter inputs on SOM accumulation, the Detritus Input Removal and Transfer (DIRT) Experiment continuously alters above- and belowground plant inputs to soil by a combination of trenching, screening, and litter addition. Here, we used biogeochemical indicators [i.e., cupric oxide extractable lignin-derived phenols and suberin/cutin-derived substituted fatty acids (SFA)] to identify the dominant sources of plant biopolymers in SOM and various measures [i.e., soil density fractionation, laboratory incubation, and radiocarbon-based mean residence time (MRT)] to assess the stability of SOM in two contrasting forests within the DIRT Experiment: an aggrading deciduous forest and an old-growth coniferous forest. In the deciduous forest, removal of both above- and belowground inputs increased the total amount of SFA over threefold compared with the control, and shifted the SFA signature towards a root-dominated source. Concurrently, light fraction MRT increased by 101 years and C mineralization during incubation decreased compared with the control. Together, these data suggest that root-derived aliphatic compounds are a source of SOM with greater relative stability than leaf inputs at this site. In the coniferous forest, roots were an important source of soil lignin-derived phenols but needle-derived, rather than root-derived, aliphatic compounds were preferentially preserved in soil. Fresh wood additions elevated the amount of soil C recovered as light fraction material but also elevated mineralization during incubation compared with other DIRT treatments, suggesting that not all of the added soil C is directly stabilized. Aboveground needle litter additions, which are more N-rich than wood debris, resulted in accelerated mineralization of previously stored soil carbon. In summary, our work demonstrates that the dominant plant sources of SOM differed substantially between forest types. Furthermore, inputs to and losses from soil C pools likely will not be altered uniformly by changes in litter input rates. [source]


Achieving state estimation equivalence for misassigned disturbances in offset-free model predictive control

AICHE JOURNAL, Issue 2 2009
Murali R. Rajamani
Abstract Integrated white noise disturbance models are included in advanced control strategies, such as Model Predictive Control, to remove offset when there are unmodeled disturbances or plant/model mismatch. These integrating disturbances are usually modeled to enter either through the plant inputs or the plant outputs or partially through both. There is currently a lack of consensus in the literature on the best choice for the structure of this disturbance model to obtain good feedback control. We show that the choice of the disturbance model does not affect the closed- loop performance if appropriate covariances are used in specifying the state estimator. We also present a data based autocovariance technique to estimate the appropriate covariances regardless of the plant's true unknown disturbance source. The covariances estimated using the autocovariance technique and the resulting estimator gain are shown to compensate for an incorrect choice of the source of the disturbance in the disturbance model. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]