Plant Growth Regulators (plant + growth_regulator)

Distribution by Scientific Domains


Selected Abstracts


ChemInform Abstract: Chloroisosulochrin, Chloroisosulochrin Dehydrate, and Pestheic Acid, Plant Growth Regulators, Produced by Pestalotiopsis theae.

CHEMINFORM, Issue 51 2001
A. Shimada
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Natural products that have been used commercially as crop protection agents

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6 2007
Leonard G Copping
Abstract Many compounds derived from living organisms have found a use in crop protection. These compounds have formed the basis of chemical synthesis programmes to derive new chemical products; they have been used to identify new biochemical modes of action that can be exploited by industry-led discovery programmes; some have been used as starting materials for semi-synthetic derivatives; and many have been used or continue to be used directly as crop protection agents. This review examines only those compounds derived from living organisms that are currently used as pesticides. Plant growth regulators and semiochemicals have been excluded from the review, as have living organisms that exert their effects by the production of biologically active secondary metabolites. Copyright © 2007 Society of Chemical Industry [source]


Apical callus formation and plant regeneration controlled by plant growth regulators on axenic culture of the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta)

PHYCOLOGICAL RESEARCH, Issue 3 2000
Nair S. Yokoya
SUMMARY Axenic cultures of Gracilariopsis tenuifrons (Bird et Oliveira) Fredericq et Hommersand (Gracilariales, Rhodophyta) were established in ASP12-NTA solid medium (0.4% agar and 1.0% sucrose) supplemented with plant growth regulators to evaluate the effects on apical callus formation and plant regeneration. Indole-3-acetic acid (IAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BA) were added individually or in combinations (IAA : BA) over a range of concentrations from 0.5 to 5 mg L,1. Growth of apical and intercalary segments was stimulated by high concentrations of 2,4-D (5 mg L,1) and a high IAA to BA ratio (IAA : BA = 5:1 mg L,1) respectively. Apical calluses were originated from divisions of apical and cortical cells located at apical regions of thallus segments and lateral branches. Low concentration of IAA (0.5 mg L,1) or a high IAA to BA ratio (IAA : BA = 5:1 mg L,1) were the optimal treatments for inducing apical callus formation in apical segments, while high concentration of IAA (5 mg L,1) stimulated the highest callus induction rate in intercalary segments. Conversely, equal parts IAA and BA (IAA : BA = 1:1 mg L,1) and low concentration of 2,4-D (0.5 mg L,1) stimulated growth of apical calluses from apical and intercalary segments, respectively. Two processes of regeneration were observed: direct regeneration (upright axis originated from cells of proximal region of intercalary segments) and indirect regeneration (adventitious plantlet originated from cells of apical calluses). Direct regeneration was promoted significantly by treatment with a low IAA to BA ratio (IAA : BA= 1:5 mg L,1), and treatments with IAA (0.5 mgL,1) or 2,4-D (0.5 or 5 mg L,1) significantly stimulated the elongation of upright axis. Plant growth regulators are essential to inducing indirect regeneration, and a high concentration of IAA (5 mg L,1) and BA (5 mg L,1) were the optimal treatments for inducing the regeneration of plantlets from apical calluses in apical and intercalary segments, respectively. Regenerating plantlets grew into plants morphologically similar to those formed from germinating spores, and became fertile after 6 weeks. The results suggest that auxins and cytokinins are involved in developmental regulatory processes in G. tenuifrons. The regeneration process from calluses in species of Gracilariales was observed for the first time in the present study. The culture system described for G. tenuifrons could be useful for micropropagation and for biotechnological applications in agarophytic algae. [source]


Compensative Effects of Chemical Regulation with Uniconazole on Physiological Damages Caused by Water Deficiency during the Grain Filling Stage of Wheat

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2008
L. Duan
Abstract Chemical regulation using plant growth regulators has proved to be potentially beneficial in water-saving agriculture. This experiment was conducted with winter wheat (Triticum aestivum L. cv. ,Jingdong 6') to study the effect of chemical regulation on alleviation of water deficit stress during the grain filling stage. Uniconazole, a plant growth regulator, was foliar sprayed at 85 % (adequate irrigation) and 60 % (deficit irrigation) field capacity. Results showed that the distribution of 3H-H2O in roots and flag leaf, characteristics of vascular bundle in primary roots and internode below spike, roots activity, transpiration rate and stomatal conductance of flag leaf were negatively affected by deficit irrigation after flowering. Foliar spraying at the early jointing stage with 13.5 gha,1 uniconazole was able to relieve and compensate for the harmful effects of deficit irrigation. Both the area of vascular bundle in primary roots and internode below the ear were increased by uniconazole, while root viability and their ability to absorb and transport water were increased. In the flag leaf, stomatal conductance was reduced to maintain the transpiration rate and water use efficiency (WUE) measured for a single wheat plant was higher. Uniconazole increased WUE by 25.0 % under adequate and 22 % under deficit irrigations. Under adequate irrigations, the 14C-assimilates export rate from flag leaf in 12 h (E12h) was increased by 65 % and 36 % in early and late filling stages, while under deficit irrigations, the E12h of uniconazole-treated plants exceeded that of control plants by 5 % and 34 % respectively. Physiological damages caused by water deficiency during the grain filling stage of wheat was alleviated by foliar spraying with uniconazole. [source]


Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin

FEBS JOURNAL, Issue 14 2001
Goro Taguchi
Scopoletin is one of the phytoalexins in tobacco. Cells of the T-13 cell line (Nicotiana tabacum L. Bright Yellow) accumulate a large amount of scopoletin, also known as 7-hydroxy-6-methoxycoumarin, as a glucoconjugate, scopolin, in vacuoles. We report here the molecular cloning of glucosyltransferases that can catalyze the glucosylation of many kinds of secondary metabolites including scopoletin. Two cDNAs encoding glucosyltransferase (NtGT1a and NtGT1b) were isolated from a cDNA library derived from the tobacco T-13 cell line by screening with heterologous cDNAs as a probe. The deduced amino-acid sequences of NtGT1a and NtGT1b exhibited 92% identity with each other, ,,20,50% identities with other reported glucosyltransferases. Heterologous expression of these genes in Escherichia coli showed that the recombinant enzymes had glucosylation activity against both flavonoids and coumarins. They also strongly reacted with 2-naphthol as a substrate. These recombinant enzymes can utilize UDP-glucose as the sugar donor, but they can also utilize UDP-xylose as a weak donor. RNA blot analysis showed that these genes are induced by salicylic acid and auxin, but the time course of the expression was different. This result is similar to the changes in scopoletin glucosylation activity in these tobacco cells after addition of these plant growth regulators. These results might suggest that one of the roles of the products of these genes is scopoletin glucosylation, in response to salicylic acid and/or auxin, together with the other glucosyltransferases in tobacco cells. [source]


Compensative Effects of Chemical Regulation with Uniconazole on Physiological Damages Caused by Water Deficiency during the Grain Filling Stage of Wheat

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2008
L. Duan
Abstract Chemical regulation using plant growth regulators has proved to be potentially beneficial in water-saving agriculture. This experiment was conducted with winter wheat (Triticum aestivum L. cv. ,Jingdong 6') to study the effect of chemical regulation on alleviation of water deficit stress during the grain filling stage. Uniconazole, a plant growth regulator, was foliar sprayed at 85 % (adequate irrigation) and 60 % (deficit irrigation) field capacity. Results showed that the distribution of 3H-H2O in roots and flag leaf, characteristics of vascular bundle in primary roots and internode below spike, roots activity, transpiration rate and stomatal conductance of flag leaf were negatively affected by deficit irrigation after flowering. Foliar spraying at the early jointing stage with 13.5 gha,1 uniconazole was able to relieve and compensate for the harmful effects of deficit irrigation. Both the area of vascular bundle in primary roots and internode below the ear were increased by uniconazole, while root viability and their ability to absorb and transport water were increased. In the flag leaf, stomatal conductance was reduced to maintain the transpiration rate and water use efficiency (WUE) measured for a single wheat plant was higher. Uniconazole increased WUE by 25.0 % under adequate and 22 % under deficit irrigations. Under adequate irrigations, the 14C-assimilates export rate from flag leaf in 12 h (E12h) was increased by 65 % and 36 % in early and late filling stages, while under deficit irrigations, the E12h of uniconazole-treated plants exceeded that of control plants by 5 % and 34 % respectively. Physiological damages caused by water deficiency during the grain filling stage of wheat was alleviated by foliar spraying with uniconazole. [source]


Variability of Endotoxin Expression in Bt Transgenic Cotton

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2007
H. Z. Dong
Abstract Transgenic cotton expressing Bt (Bacillus thuringiensis) toxins is currently cultivated on a large commercial scale in many countries, but observations have shown that it behaves variably in toxin efficacy against target insects under field conditions. Understanding of the temporal and spatial variation in efficacy and the resulting mechanisms is essential for cotton protection and production. In this review, we summarize current knowledge on variability in Bt cotton efficacy, in particular on the induced variability by environmental stresses. We also discuss the resulting mechanisms and the countermeasures for the inconsistence in efficacy in Bt cotton. It is indicated that insecticidal protein content in Bt cotton is variable with plant age, plant structure or under certain environmental stresses. Variability in Bt cotton efficacy against target insect pests is mainly attributed to the changes in Bt protein content, but physiological changes associated with the production of secondary compounds in plant tissues may also play an important role. Reduction of Bt protein content in late-season cotton could be due to the overexpression of Bt gene at earlier stages, which leads to gene regulation at post-transcription levels and consequently results in gene silencing at a later stage. Methylation of the promotor may be also involved in the declined expression of endotoxin proteins. As a part of total protein, the insecticidal protein in plant tissues changes its level through inhibited synthesis, degradation or translocation to developing plant parts, particularly under environmental stresses, thus being closely correlated to N metabolism. It can be concluded that developing new cotton varieties with more powerful resistance, applying certain plant growth regulators, enhancing intra-plant defensive capability, and maintenance of general health of the transgenic crop are important in realizing the full transgenic potential in Bt cotton. [source]


Influence of subacute treatment of some plant growth regulators on serum marker enzymes and erythrocyte and tissue antioxidant defense and lipid peroxidation in rats

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2006
Ismail Celik
Abstract This study aims to investigate the effects of the plant growth regulators (PGRs) (2,3,5-triiodobenzoic acid (TIBA), Naphthaleneacetic acid (NAA), and 2,4-dichlorofenoxyacetic acid (2,4-D)) on serum marker enzymes (aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH)), antioxidant defense systems (reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase (CAT)), and lipid peroxidation content (malondialdehyde = MDA) in various tissues of rats. 50 and 100 ppm of PGRs as drinking water were administered orally to rats (Sprague,Dawley albino) ad libitum for 25 days continuously. The PGRs treatment caused different effects on the serum marker enzymes, antioxidant defense systems, and the MDA content in experimented rats compared to controls. Results showed that TIBA caused a significant decrease in serum AST activity with both the dosage whereas serum CPK was significantly increased with 100 ppm dosage of TIBA. Meanwhile, serum AST, CPK, and LDH activities were significantly increased with both dosage of NAA and 2,4-D. The lipid peroxidation end-product MDA significantly increased in the all tissues treated with both dosages of PGRs without any change in the brain and erythrocyte of rats treated with both the dosages of 2,4-D. The GSH depletion in the kidney and brain tissues of rats treated with both dosages of PGRs was found to be significant. Furthermore, the GSH depletion in the erythrocyte of rats treated with both dosages of PGRs except 50 ppm dosage of 2,4-D was significant too. Also, the GSH level in the liver was significantly depleted with 50 ppm of 2,4-D and NAA, whereas the GSH depletion in the same tissue did not significantly change with the treatment. The activity of antioxidant enzymes was also seriously affected by PGRs; SOD significantly decreased in the liver, heart, kidney, and brain of rats treated with both dosages of NAA, whereas the SOD activity in the erythrocytes, liver, and heart was either significantly decreased or not changed with two doses of 2,4-D and TIBA. Although the CAT activity significantly increased in the erythrocyte and brain of rats treated with both doses of PGRs, it was not changed in the liver, heart, and kidney. Meanwhile, the ancillary enzyme GR activity significantly increased in the brain, heart, and liver but decreased in the erythrocyte and kidney of rats treated with both doses of PGRs. The drug-metabolizing enzyme GST activity significantly increased in the heart and kidney but decreased in the brain and erythrocytes of rats treated with both dosages of PGRs. As a conclusion, the results indicate that PGRs might affect antioxidant potential enzymes, the activity of hepatic damage enzymes, and lipid peroxidation dose independently. Also, the rats resisted to oxidative stress via antioxidant mechanism but the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. These data, along with the determined changes, suggest that PGRs produced substantial systemic organ toxicity in the erythrocyte, liver, brain, heart, and kidney during the period of a 25-day subacute exposure. © 2006 Wiley Periodicals, Inc. J Biochem Mol Toxicol 20:174,182, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20134 [source]


Preparation and application of a novel environmentally friendly organic seed coating for rice

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2009
Defang Zeng
Abstract BACKGROUND: Traditional rice seed coating techniques involve the use of chemical pesticides, which can damage the seed in the process and cause possible physical and environmental damage. Increasing knowledge and concern about the traditional applications have brought new attention to the industry and the search for a novel coating agent that is effective, safe and environmentally friendly. A new type of organic rice seed coating agent was developed using liquid-based polymeric adhesives. By using chitosan as the main raw material, modified with sodium hydroxide and polymerised with plant growth regulators and other additives, the novel seed coating agent is a safer, cheaper and more environmentally friendly alternative. RESULTS: The novel seed coating agent significantly enhanced sprout growth over traditional agents. We found it has obvious biological advantages: it stimulates the seedling growth of rice, advances the growth of root, improves root activity and increases the crop yield in the germination test and field trial. Compared with the traditional rice seed coating agent, the crop yield of seeds coated by the novel seed coating agent was increased by 5%, and at 25% less cost. The fungal inhibition test of the novel seed coating agent and acute toxicity test on fish showed that it has an obvious fungal inhibitory effect and a higher safety index during usage and disposal. CONCLUSION: This result suggests that treating seeds with the novel seed coating agent has significant agricultural implications through the enhanced seed vigour as reflected in growth. It is efficient and effective, resulting in better seed and crop protection. The novel seed coating agent demonstrates unique characteristics with great economic and environmental benefits. Copyright © 2009 Society of Chemical Industry [source]


Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 5 2003
Yvon Dumas
Abstract Antioxidants are believed to be important in the prevention of diseases such as cancer and cardiovascular disease. Lycopene is one of the main antioxidants to be found in fresh tomatoes and processed tomato products. The lycopene content also accounts for the redness of the fruit, which is one of the main qualities for which industry and consumers now look. Other carotenes (such as ,-carotene), vitamin C, vitamin E and various phenolic compounds are also thought to be health-promoting factors with antioxidant properties. Since the antioxidant content of tomatoes may depend on genetic factors, the choice of variety cultivated may affect the results at harvest. To be able to control the antioxidant content of tomatoes at the field level when growing a given variety, it is necessary to know the effects of both environmental factors and the agricultural techniques used. Temperatures below 12 °C strongly inhibit lycopene biosynthesis and temperatures above 32 °C stop this process altogether. The effects of the temperature on the synthesis of other antioxidants have not yet been properly assessed. The effects of light have been studied more thoroughly, apart from those on vitamin E. The effects of water availability, mineral nutrients (nitrogen, phosphorus, potassium and calcium) and plant growth regulators have been studied, but results are sometimes contradictory and the data often incomplete. During the ripening period, lycopene content of tomatoes increases sharply from the pink stage onwards, but no sufficient attempts have been made so far to assess the changes in the other antioxidants present in the fruit. This paper reviews the present state of the art. Copyright © 2003 Society of Chemical Industry [source]


Selectivity of pesticides used on cotton (Gossypium hirsutum) to Trichogramma pretiosum reared on two laboratory-reared hosts,

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 1 2006
Cristina S Bastos
Abstract The side-effects of pesticides (insecticides, fungicides, herbicides and plant growth regulators) used on cotton were tested on adults and pupae of Trichogramma pretiosum Riley reared in the laboratory on two different hosts, the Angoumois grain moth (Sitotroga cerealella Olivier) and the Mediterranean flour moth (Ephestia kuehniella (Zeller)). The eggs of the host enclosing the parasitoid pupae received direct pesticide sprays, while the adults of the parasitoid were exposed to the pesticides through contact with residues on sprayed eggs offered to parasitism. Alpha-cypermethrin, carbosulfan, deltamethrin, endosulfan, profenofos and zeta-cypermethrin were highly noxious to the parasitoid, significantly reducing the percentage of emergence and parasitism of T. pretiosum developing in E. kuehniella or S. cerealella eggs. However, the pupal stage of the parasitoid developing in S. cerealella eggs was less susceptible to alpha-cypermethrin and deltamethrin. Lufenuron and metamidophos greatly reduced the percentage of adult emergence from eggs of both hosts, while novaluron only interfered on this variable when the wasps were developing in E. kuehniella eggs. However, lufenuron and monocrotophos had no effect on the parasitoid pupae of T. pretiosum developing in E. kuehniella eggs. Chlorfluazuron, diafenthiuron, diflubenzuron, fentin hydroxide, mepiquat chloride, novaluron, thiacloprid and triflumuron did not affect T. pretiosum emergence when eggs of S. cerealella enclosing pupae of the wasps were surface treated. The pesticides azoxystrobin, carbendazin + thiram, mepiquat chloride and novaluron had no effect on the ability of the wasps to parasitise E. kuehniella eggs. However, only mepiquat chloride did not affect the percentage of F1 wasps emerging from E. kuehniella eggs. The remaining pesticides moderately reduced the percentage of emergence and parasitism of the wasps when they had contact with the chemicals during their pupal or adult stage. Thus there were differences in pesticide toxicity according to the host used for parasitoid development. These differences were hypothesised to occur because of differences in egg morphology and parasitoid performance. Copyright © 2005 Society of Chemical Industry [source]


Apical callus formation and plant regeneration controlled by plant growth regulators on axenic culture of the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta)

PHYCOLOGICAL RESEARCH, Issue 3 2000
Nair S. Yokoya
SUMMARY Axenic cultures of Gracilariopsis tenuifrons (Bird et Oliveira) Fredericq et Hommersand (Gracilariales, Rhodophyta) were established in ASP12-NTA solid medium (0.4% agar and 1.0% sucrose) supplemented with plant growth regulators to evaluate the effects on apical callus formation and plant regeneration. Indole-3-acetic acid (IAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BA) were added individually or in combinations (IAA : BA) over a range of concentrations from 0.5 to 5 mg L,1. Growth of apical and intercalary segments was stimulated by high concentrations of 2,4-D (5 mg L,1) and a high IAA to BA ratio (IAA : BA = 5:1 mg L,1) respectively. Apical calluses were originated from divisions of apical and cortical cells located at apical regions of thallus segments and lateral branches. Low concentration of IAA (0.5 mg L,1) or a high IAA to BA ratio (IAA : BA = 5:1 mg L,1) were the optimal treatments for inducing apical callus formation in apical segments, while high concentration of IAA (5 mg L,1) stimulated the highest callus induction rate in intercalary segments. Conversely, equal parts IAA and BA (IAA : BA = 1:1 mg L,1) and low concentration of 2,4-D (0.5 mg L,1) stimulated growth of apical calluses from apical and intercalary segments, respectively. Two processes of regeneration were observed: direct regeneration (upright axis originated from cells of proximal region of intercalary segments) and indirect regeneration (adventitious plantlet originated from cells of apical calluses). Direct regeneration was promoted significantly by treatment with a low IAA to BA ratio (IAA : BA= 1:5 mg L,1), and treatments with IAA (0.5 mgL,1) or 2,4-D (0.5 or 5 mg L,1) significantly stimulated the elongation of upright axis. Plant growth regulators are essential to inducing indirect regeneration, and a high concentration of IAA (5 mg L,1) and BA (5 mg L,1) were the optimal treatments for inducing the regeneration of plantlets from apical calluses in apical and intercalary segments, respectively. Regenerating plantlets grew into plants morphologically similar to those formed from germinating spores, and became fertile after 6 weeks. The results suggest that auxins and cytokinins are involved in developmental regulatory processes in G. tenuifrons. The regeneration process from calluses in species of Gracilariales was observed for the first time in the present study. The culture system described for G. tenuifrons could be useful for micropropagation and for biotechnological applications in agarophytic algae. [source]


A Study of the Interaction between Auxin and Ethylene in Wild Type and Transgenic Ethylene-Insensitive Tobacco during Adventitious Root Formation Induced by Stagnant Root Zone Conditions

PLANT BIOLOGY, Issue 5 2003
M. P. McDonald
Abstract: Wild type (Wt) and transgenic plants (etr1-1 gene from Arabidopsis thaliana; encoding for a defective ethylene receptor; Tetr) of Nicotiana tabacum L. were subjected to experiments to resolve the role of the interaction between ethylene and auxin in waterlogging-induced adventitious root formation. Plants were grown in aerated or stagnant deoxygenated nutrient solution and treated with the following plant growth regulators: ethylene, the synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (1-NAA), and the auxin efflux inhibitor naphthylphthalamic acid (NPA). The superior growth of Wt in stagnant solution suggests that the ability to sense and respond to ethylene partially mediates tolerance to stagnant root zone conditions. Wt produced around 2 - 2.5-fold more adventitious roots than Tetr in aerated and stagnant solution. Treatment with NPA phenocopied the effects of ethylene insensitivity by reducing the number of adventitious roots on Wt to Tetr levels. Additionally, application of 1-NAA to the shoot of Tetr increased the number of adventitious roots on Tetr to similar levels as the untreated Wt. However, this level was only around half the number achieved by 1-NAA-treated Wt. The results suggest an interplay between ethylene and auxin in the process of adventitious root formation in waterlogged tobacco, most likely on the level of polar auxin transport. However, a separate non-auxin-related role as a transcription regulator for genes essential to adventitious root formation cannot be excluded. [source]


In vitro micro-tuber initiation and dormancy in yam

ANNALS OF APPLIED BIOLOGY, Issue 2 2010
E.I. Hamadina
Dormancy is a mechanism that regulates the timing of sprouting (germination) of affected plant parts as well as ensures that the food quality of edible parts is maintained in storage until the following growing season. In yam, however, little is known about the control of tuber initiation or tuber dormancy. The objective of this study was to determine the effects of selected plant growth regulators (PGRs) on tuber initiation and dormancy, using an in vitro system. In two replicated experiments, 2-chloroethylphosphonic acid (ethephon, an ethylene source), abscisic acid (ABA) and gibberellin (GA3) , and their inhibitors silver nitrate, fluridone and 2-chloroethyl-trimethylammonium chloride, respectively , were added at two concentrations to the culture medium prior to explant culture. Dates of micro-tuber initiation and sprouting (end of dormancy) and tuber number were recorded. In the control (no PGR) in Experiment 1, micro-tubers were initiated at the base of the stem after 176 days and sprouted 235 days later, that is 411 days after culturing. Most PGR treatments had only small effects (±30 days) on the duration of dormancy and the time of micro-tuber initiation. However, in GA3 micro-tuber initiation occurred after 76 days, about 100 days earlier than in the control, whereas fluridone affected the position of micro-tubers and duration of dormancy. With fluridone treatments, tubers were found at the base of the stem (normal position) and on lower and upper nodes. Lower node tubers sprouted within 225 days of culturing compared with about 420 days after culturing at other nodal positions and in other PGR treatments. These data suggest an important role for ABA and gibberellic acid in yam micro-tuber initiation and the induction of dormancy. [source]


Grapevine productivity and yield components: A case study using field vines of Zante currant

AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 2 2004
JOHN A. CONSIDINE
Abstract Yield components of the parthenocarpic cultivar Zante were analysed for five vineyards of diverse age and management. The data was obtained as part of an experiment to improve fruit set and yield by applying combinations of gibberellin and 2-chloroethyltrimethyl ammonium chloride or 4-chlorophenoxyacetic acid. Four of the vineyards were located in the Brockman valley north of Perth, Western Australia, two of these were irrigated, one was rain fed and one received supplementary flood irrigation. The fifth lay in an adjacent area of coastal sand plain, at the foot of the Darling scarp, and was irrigated. The vines were aged from 6 to 50 years. Principal component analysis showed that vine age was negatively correlated with vigour (pruning weight) and with berry number per bunch. Vine age however was not strongly related to either yield or yield components (bunch number and berry volume). Sugar concentration was negatively correlated with all yield components but imprecisely modelled based on any combination of the measured variables. Berry number per vine appeared to be the underlying factor determining ,sink' strength though this was inextricably confounded with bunch number per vine. Interpretation of the data leads to the conclusion that increased berry volume is an inefficient means of increasing dried yield. This conclusion argues for caution in the application of plant growth regulators that act primarily to increase berry volume. Yield of sugar per vine was accurately modelled based on second order relationships with bunch number per vine, berry number per bunch, berry volume and pruning weight. Vine age also showed a second order relationship to yield although the range was relatively small. The observations are considered in terms of developing strategies for maximising dried yield and devising mathematical models to account for photoassimilate (dry matter) partitioning in Vitis. [source]