Plant Growth Rates (plant + growth_rate)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Resistance and tolerance to herbivory in Salix cordata are affected by different environmental factors

ECOLOGICAL ENTOMOLOGY, Issue 5 2005
Kevin P. Macdonald
Abstract., 1.,Effects of sand burial and nutrients on the ability of sand-dune willow (Salix cordata) to tolerate or resist herbivory by the beetle Altica subplicata were evaluated in field experiments. 2.,To assess tolerance, all combinations of sand burial (none, 50%), nutrients (presence, absence), and beetles (presence, absence) were applied to caged plants and growth responses to herbivory were measured. Sand burial increased plant growth rate, but decreased S. cordata's tolerance to herbivory. Although nutrients increased growth, tolerance to herbivory was unaffected. 3.,To assess resistance, plants were exposed to all combinations of sand burial and nutrients, and then to natural beetle colonisation. The presence of nutrients, but not sand burial, significantly increased the percentage of plants with beetles, for both adults and larvae. This decreased resistance to beetles of plants grown with added nutrients occurred only in the absence of sand burial. 4.,The performance and preference of beetles were examined in laboratory experiments. Larvae developed faster and had increased pupation success on plants with nutrients added. Beetles also showed a marginally significant feeding preference for leaves grown with added nutrients. Thus, S. cordata tolerance to herbivory was affected by sand burial, whereas resistance, preference, and performance were affected by nutrient level. [source]


The influence of host plant variation and intraspecific competition on oviposition preference and offspring performance in the host races of Eurosta solidaginis

ECOLOGICAL ENTOMOLOGY, Issue 1 2000
Timothy P. Craig
Summary 1. A series of experiments was conducted to measure the impact of plant genotype, plant growth rate, and intraspecific competition on the oviposition preference and offspring performance of the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and Solidago gigantea (Asteraceae). Previous research has shown that both host races prefer to oviposit on their own host plant where survival is much higher than on the alternate host plant. In this study, neither host race showed any relationship between oviposition preference and offspring performance in choosing among plants of their natal host species. 2. The larval survival of both host races differed among plant genotypes when each host race oviposited on its natal host species. In one experiment, altissima host race females showed a preference among plant genotypes that was not correlated with offspring performance on those genotypes. In all other experiments, neither the altissima nor gigantea host race demonstrated a preference for specific host plant genotypes. 3. Eurosta solidaginis had a preference for ovipositing on rapidly growing ramets in all experiments, however larval survival was not correlated with ramet growth rate at the time of oviposition. 4. Eurosta solidaginis suffered high mortality from intraspecific competition in the early larval stage. There was little evidence, however, that females avoided ovipositing on ramets that had been attacked previously. This led to an aggregated distribution of eggs among ramets and strong intraspecific competition. 5. There was no interaction among plant genotype, plant growth rate, or intraspecific competition in determining oviposition preference or offspring performance. [source]


Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America

GLOBAL CHANGE BIOLOGY, Issue 12 2006
MILENA HOLMGREN
Abstract While climatic extremes are predicted to increase with global warming, we know little about the effect of climatic variability on biome distribution. Here, we show that rainy El Niño Southern Oscillation (ENSO) events can enhance tree recruitment in the arid and semiarid ecosystems of north-central Chile and northwest Peru. Tree-ring studies in natural populations revealed that rainy El Niño episodes have triggered forest regeneration in Peru. Field experiments indicate that tree seedling recruitment in Chile is much less successful than in Peru due mostly to larger mortality caused by herbivores. The dramatic impact of herbivores in Chile was derived from the combined result of slower plant growth and the presence of exotic herbivores (European rabbits and hares). The interplay of herbivory and climatic effects we demonstrated implies that rainy ENSO events may represent ,windows of opportunity' for forest recovery if herbivore pressure is minimized at the right moment. [source]


Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis

OIKOS, Issue 2 2004
Heli Nykänen
We conducted a meta-analysis of 68 studies published between 1982 and 2000 in which the responses of woody plants to natural or simulated herbivore damage and/or insect herbivore performance on control and damaged plants were measured. Cumulative meta-analyses revealed dramatic temporal changes in the magnitude and direction of the plant and herbivore responses reported during the last two decades. Studies conducted in the 1980s reported increase in phenolic concentrations, reduction in nutrient concentrations and negative effect on herbivore performance, consistently with the idea of induced resistance. In contrast, in the early 1990s when the idea that some types of plant damage may result in induced susceptibility was generally accepted, studies reported non-significant results or induced susceptibility, and smaller effects on herbivores. The above changes may reflect paradigm shifts in the theory of induced defenses and/or the differences between study systems used in the early and the more recent studies. Overall, plant growth and carbohydrate concentrations were reduced in damaged plants despite enhanced photosynthetic rates. Damage increased the concentrations of carbon and phenolics, while terpene concentrations tended to decrease after damage; changes in nutrient concentrations after damage varied according to nutrient mobility, inherent plant growth rate, ontogenetic stage and plant type (deciduous/evergreen). Early season damage caused more pronounced changes in plants than late season damage, which is in accordance with the assumption that vigorously growing foliage has a greater capacity to respond to damage. Insect growth rate and female pupal weight decreased on previously damaged plants, while herbivore survival, consumption and male pupal weight were not significantly affected. The magnitude and direction of herbivore responses depended on the type of plant, the type of damage, the time interval between the damage and insect feeding (rapid/delayed induced resistance), and the timing of the damage. [source]


Management strategies for plant invasions: manipulating productivity, disturbance, and competition

DIVERSITY AND DISTRIBUTIONS, Issue 3 2004
Michael A. Huston
ABSTRACT The traditional approach to understanding invasions has focused on properties of the invasive species and of the communities that are invaded. A well-established concept is that communities with higher species diversity should be more resistant to invaders. However, most recently published field data contradict this theory, finding instead that areas with high native plant diversity also have high exotic plant diversity. An alternative environment-based approach to understanding patterns of invasions assumes that native and exotic species respond similarly to environmental conditions, and thus predicts that they should have similar patterns of abundance and diversity. Establishment and growth of native and exotic species are predicted to vary in response to the interaction of plant growth rates with the frequency and intensity of mortality-causing disturbances. This theory distinguishes between the probability of establishment and the probability of dominance, predicting that establishment should be highest under unproductive and undisturbed conditions and also disturbed productive conditions. However, the probability of dominance by exotic species, and thus of potential negative impacts on diversity, is highest under productive conditions. The theory predicts that a change in disturbance regime can have opposite effects in environments with contrasting levels of productivity. Manipulation of productivity and disturbance provides opportunities for resource managers to influence the interactions among species, offering the potential to reduce or eliminate some types of invasive species. [source]


Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species

FUNCTIONAL ECOLOGY, Issue 4 2009
Jiao-Lin Zhang
Summary 1Stem vascular system strongly influences structure and functioning of leaves, life-history, and distribution of plants. Xylem structure and hydraulic conductivity of branches, leaf functional traits, and growth rates in 17 dipterocarp species in a mature plantation stand were examined to explore the functional relationships between these traits. 2Maximum hydraulic conductivity on the bases of both sapwood and leaf area (kL) were positively correlated with midday leaf water potential in the rainy season, stomatal conductance, area-based maximum photosynthetic rate, photosynthetic N (PNUE) and P use efficiencies (PPUE), and mean height and diameter growth rates. Moreover, kL was positively correlated with mesophyll thickness and mass-based maximum photosynthetic rate. These results revealed the mechanistic linkage between stem hydraulics and leaf photosynthesis through nutrient use efficiency and mesophyll development of leaves. 3A detrended correspondence analysis (DCA) using 37 traits showed that the traits related to stem hydraulics and leaf carbon gain were loaded on the first axis whereas traits related to light harvesting were loaded on the second axis, indicating that light harvesting is a distinct ecological axis for tropical canopy plants. The DCA also revealed a trade-off between photosynthetic water use efficiency and hydraulic conductivity along with PNUE and PPUE. 4The congeneric species were scattered fairly close together on the DCA diagram, indicating that the linkages between stem hydraulics, leaf functional traits, and plant growth rates are phylogenetically conserved. 5These results suggest that stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies, and growth rates across the dipterocarp species. The wide variation in functional traits and growth rates among these dipterocarp species along with the trade-offs mentioned above provide a possible explanation for their co-existence in tropical forest communities. [source]


Shifts in leaf N : P ratio during resorption reflect soil P in temperate rainforest

FUNCTIONAL ECOLOGY, Issue 4 2008
Sarah J. Richardson
Summary 1Large-scale syntheses of leaf and litter N and P concentrations have demonstrated that leaf and litter N : P ratios both decline with latitude, that litter N : P ratios are generally greater than those of fresh leaves, and that the difference between these two ratios increases towards the tropics. These patterns have been ascribed to either a direct effect of temperature on plant growth rates and leaf-level physiology, or a decline in soil P towards the tropics. We test the hypothesis that global patterns of leaf and litter N : P ratios reflect a soil-P gradient by examining leaf and litter N : P in all species from a temperate rainforest along a soil-P gradient. 2The soil P gradient followed a toposequence of 20 plots. There was > 50-fold variation in soil total P from ridges (23,136 mg kg,1), through faces and terraces (32,744 mg kg,1), to gullies (440,1214 mg kg,1). 3The N : P ratios of leaves and litter both declined as soil total P increased, and the N : P ratio of litter was greater than that of fresh leaves. The difference between litter N : P and fresh leaf N : P declined with increasing soil total P supporting the hypothesis that global patterns of N : P ratios reflect gradients of soil P. 4Compositional turnover with soil P partly contributed to the total plant community leaf and litter nutrient concentration responses. However, consistent within-species responses pointed to a soil-based mechanism for determining responses by the total plant community. 5Comparisons of our litter data to global data sets suggest that the vegetation was well adapted to low soil nutrient concentrations with 37% of litter N and 24% of litter P samples being below published thresholds for highly proficient nutrient resorption. 6The range of leaf N and leaf P concentrations at our site captured a large portion of the range reported in global leaf trait data sets. 7Highly proficient P resorption was responsible for the divergence in leaf and litter N : P ratios on P-poor soils. These results emphasize the significance of proficient nutrient resorption as an advantageous plant trait for nutrient conservation on P-poor soils. [source]


Performance of High Arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event

GLOBAL CHANGE BIOLOGY, Issue 12 2005
Fleur L. Marchand
Abstract Arctic ecosystems are known to be extremely vulnerable to climate change. As the Intergovernmental Panel on Climate Change scenarios project extreme climate events to increase in frequency and severity, we exposed High Arctic tundra plots during 8 days in summer to a temperature rise of approximately 9°C, induced by infrared irradiation, followed by a recovery period. Increased plant growth rates during the heat wave, increased green cover at the end of the heat wave and higher chlorophyll concentrations of all four predominating species (Salix arctica Pall., Arctagrostis latifolia Griseb., Carex bigelowii Torr. ex Schwein and Polygonum viviparum L.) after the recovery period, indicated stimulation of vegetative growth. Improved plant performance during the heat wave was confirmed at plant level by higher leaf photochemical efficiency (Fv/Fm) and at ecosystem level by increased gross canopy photosynthesis. However, in the aftermath of the temperature extreme, the heated plants were more stressed than the unheated plants, probably because they acclimated to warmer conditions and experienced the return to (low) ambient as stressful. We also calculated the impact of the heat wave on the carbon balance of this tundra ecosystem. Below- and aboveground respiration were stimulated by the instantaneous warmer soil and canopy, respectively, outweighing the increased gross photosynthesis. As a result, during the heat wave, the heated plots were a smaller sink compared with their unheated counterparts, whereas afterwards the balance was not affected. If other High Arctic tundra ecosystems react similarly, more frequent extreme temperature events in a future climate may shift this biome towards a source. It is uncertain, however, whether these short-term effects will hold when C exchange rates acclimate to higher average temperatures. [source]


Shallow-water habitats as sources of fallback foods for hominins

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2009
Richard Wrangham
Abstract Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins. Am J Phys Anthropol 140:630,642, 2009. © 2009 Wiley-Liss, Inc. [source]