Plant Growth And Development (plant + growth_and_development)

Distribution by Scientific Domains


Selected Abstracts


Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors

THE PLANT JOURNAL, Issue 2 2008
Séverine Lorrain
Summary Plant growth and development are particularly sensitive to changes in the light environment and especially to vegetational shading. The shade-avoidance response is mainly controlled by the phytochrome photoreceptors. In Arabidopsis, recent studies have identified several related bHLH class transcription factors (PIF, for phytochrome-interacting factors) as important components in phytochrome signaling. In addition to a related bHLH domain, most of the PIFs contain an active phytochrome binding (APB) domain that mediates their interaction with light-activated phytochrome B (phyB). Here we show that PIF4 and PIF5 act early in the phytochrome signaling pathways to promote the shade-avoidance response. PIF4 and PIF5 accumulate to high levels in the dark, are selectively degraded in response to red light, and remain at high levels under shade-mimicking conditions. Degradation of these transcription factors is preceded by phosphorylation, requires the APB domain and is sensitive to inhibitors of the proteasome, suggesting that PIF4 and PIF5 are degraded upon interaction with light-activated phyB. Our data suggest that, in dense vegetation, which is rich in far-red light, shade avoidance is triggered, at least partially, as a consequence of reduced phytochrome-mediated degradation of transcription factors such as PIF4 and PIF5. Consistent with this idea, the constitutive shade-avoidance phenotype of phyB mutants partially reverts in the absence of PIF4 and PIF5. [source]


Plant growth and development

AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 2010
Article first published online: 7 JAN 2010
First page of article [source]


Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice

FEBS JOURNAL, Issue 11 2008
Mukesh Jain
Homeobox genes play a critical role in regulating various aspects of plant growth and development. In the present study, we identified a total of 107 homeobox genes in the rice genome and grouped them into ten distinct subfamilies based upon their domain composition and phylogenetic analysis. A significantly large number of homeobox genes are located in the duplicated segments of the rice genome, which suggests that the expansion of homeobox gene family, in large part, might have occurred due to segmental duplications in rice. Furthermore, microarray analysis was performed to elucidate the expression profiles of these genes in different tissues and during various stages of vegetative and reproductive development. Several genes with predominant expression during various stages of panicle and seed development were identified. At least 37 homeobox genes were found to be differentially expressed significantly (more than two-fold; P < 0.05) under various abiotic stress conditions. The results of the study suggest a critical role of homeobox genes in reproductive development and abiotic stress signaling in rice, and will facilitate the selection of candidate genes of agronomic importance for functional validation. [source]


Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2008
Li-Juan Quan
Abstract Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses. [source]


Putative Nitrogen Sensing Systems in Higher Plants

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2006
Hon-Ming Lam
Abstract Nitrogen (N) metabolism is essential for the biosynthesis of vital biomolecules. N status thus exerts profound effects on plant growth and development, and must be closely monitored. In bacteria and fungi, a few sophisticated N sensing systems have been extensively studied. In animals, the ability to receive amino acid signals has evolved to become an integral part of the nervous coordination system. In this review, we will summarize recent developments in the search for putative N sensing systems in higher plants based on homologous systems in bacteria, fungi, and animals. Apparently, although plants have separated and diversified from other organisms during the evolution process, striking similarities can be found in their N sensing systems compared with those of their counterparts; however, our understanding of these systems is still incomplete. Significant modifications of the N sensing systems (including cross-talk with other signal transduction pathways) in higher plants may be a strategy of adaptation to their unique mode of life. (Managing editor: Ping He) [source]


Disruption of Cortical Microtubules by Overexpression of Green Fluorescent Protein-Tagged ,-Tubulin 6 Causes a Marked Reduction in Cell Wall Synthesis

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2006
David H. Burk
Abstract It has been known that the transverse orientation of cortical microtubules (MTs) along the elongation axis is essential for normal cell morphogenesis, but whether cortical MTs are essential for normal cell wall synthesis is still not clear. In the present study, we have investigated whether cortical MTs affect cell wall synthesis by direct alteration of the cortical MT organization in Arabidopsis thaliana. Disruption of the cortical MT organization by expression of an excess amount of green fluorescent protein-tagged ,-tubulin 6 (GFP-TUA6) in transgenic Arabidopsis plants was found to cause a marked reduction in cell wall thickness and a decrease in the cell wall sugars glucose and xylose. Concomitantly, the stem strength of the GFP-TUA6 overexpressors was markedly reduced compared with the wild type. In addition, expression of excess GFP-TUA6 results in an alteration in cell morphogenesis and a severe effect on plant growth and development. Together, these results suggest that the proper organization of cortical MTs is essential for the normal synthesis of plant cell walls. (Managing editor: Wei Wang) [source]


Induction of systemic protection against rust infection in broad bean by saccharin: effects on plant growth and development

NEW PHYTOLOGIST, Issue 2 2005
Celia Boyle
Summary ,,Here, we examine the effect of saccharin on the induction of systemic resistance in broad bean (Vicia faba) to the rust fungus Uromyces viciae-fabae. ,,Saccharin was applied to beans at the three-leaf stage, either as a soil drench or by painting the solution on to first leaves. Plants were then challenge inoculated with the rust 1, 6, 10 and 14 d following saccharin treatment, after which they were harvested, assessed for the intensity of rust infection and plant growth measurements conducted. ,,Foliar application of saccharin did not induce systemic protection to rust infection until 14 d after application and was less effective than saccharin applied as a soil drench. When saccharin was applied as a drench, systemic protection was not observed until 6 d after application, but was still apparent in plants 14 d after application of the drench. ,,Irrespective of the method of application, saccharin had no significant effect on fresh and dry weights or leaf area of the plants. Saccharin applied as a drench did, however, reduce the number of leaflets produced. [source]


Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum

PHYSIOLOGIA PLANTARUM, Issue 1 2008
Dan Chen
Although many studies have emphasized the importance of auxin in plant growth and development, the thorough understanding of its effect on pollen,pistil interactions is largely unknown. In this study, we investigated the role of free IAA in pollen,pistil interactions during pollen germination and tube growth in Nicotiana tabacum L. through using histo and subcellular immunolocalization with auxin monoclonal antibodies, quantification by HPLC and ELISA together with GUS staining in DR5::GUS -transformed plants. The results showed that free IAA in unpollinated styles was higher in the apical part and basal part than in the middle part, and it was more abundant in the transmitting tissue (TT). At the stage of pollen germination, IAA reached its highest content in the stigma and was mainly distributed in TT. After the pollen tubes entered the styles, the signal increased in the part where pollen tubes would enter and then rapidly declined in the part where pollen tubes had penetrated. Subcellular localization confirmed the presence of IAA in TT cells of stigmas and styles. Accordingly, a schematic diagram summarizes the changing pattern of free IAA level during flowering, pollination and pollen tube growth. Furthermore, we presented evidence that low concentration of exogenous IAA could, to a certain extent, facilitate in vitro pollen tube growth. These results suggest that IAA may be directly or indirectly involved in the pollen,pistil interactions. Additionally, some improvements of the IAA immunolocalization technique were made. [source]


Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea)

PHYSIOLOGIA PLANTARUM, Issue 4 2002
Mukesh Jain
Glyoxalase I (EC 4.4.1.5) activity has long been associated with rapid cell proliferation, but experimental evidence is forthcoming, linking its role to stress tolerance as well. Proliferative callus cultures of groundnut (Arachis hypogaea L. cv. JL24) showed a 3.3-fold increase in glyoxalase I activity during the logarithmic growth phase, correlating well with the data on FW gain and mitotic index. Inhibition of cell division decreased glyoxalase I activity and vice versa, thus further corroborating its role as a cell division marker enzyme. Cell lines of A. hypogaea selected in the presence of high salt (NaCl) and herbicide (glyphosate) concentrations, yielded 4.2- to 4.5-fold and 3.9- to 4.6-fold elevated glyoxalase I activity, respectively, in a dose dependent manner reflective of the level of stress tolerance. The stress-induced increase in enzyme activity was also accompanied by an increase in the glutathione content. Exogenous supplementation of glutathione could partially alleviate the growth inhibition of callus cultures induced by methylglyoxal and d -isoascorbic acid, but failed to recover the loss in glyoxalase I activity due to d -isoascorbic acid. The adaptive significance of elevated glyoxalase I activity in maintaining glutathione homeostasis has been discussed in view of our understanding on the role of glutathione in the integration of cellular processes with plant growth and development under stress conditions. [source]


Gibberellin Biosynthesis and the Regulation of Plant Development

PLANT BIOLOGY, Issue 3 2006
M. J. Pimenta Lange
Abstract: Gibberellins (GAs) form a large family of plant growth substances with distinct functions during the whole life cycle of higher plants. The rate of GA biosynthesis and catabolism determines how the GA hormone pool occurs in plants in a tissue and developmentally regulated manner. With the availability of genes coding for GA biosynthetic enzymes, our understanding has improved dramatically of how GA plant hormones regulate and integrate a wide range of growth and developmental processes. This review focuses on two plant systems, pumpkin and Arabidopsis, which have added significantly to our understanding of GA biosynthesis and its regulation. In addition, we present models for regulation of GA biosynthesis in transgenic plants, and discuss their suitability for altering plant growth and development. [source]


Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes

PLANT BIOTECHNOLOGY JOURNAL, Issue 2 2006
Naser Farrokhi
Summary Cell walls are dynamic structures that represent key determinants of overall plant form, plant growth and development, and the responses of plants to environmental and pathogen-induced stresses. Walls play centrally important roles in the quality and processing of plant-based foods for both human and animal consumption, and in the production of fibres during pulp and paper manufacture. In the future, wall material that constitutes the major proportion of cereal straws and other crop residues will find increasing application as a source of renewable fuel and composite manufacture. Although the chemical structures of most wall constituents have been defined in detail, the enzymes involved in their synthesis and remodelling remain largely undefined, particularly those involved in polysaccharide biosynthesis. There have been real recent advances in our understanding of cellulose biosynthesis in plants, but, with few exceptions, the identities and modes of action of polysaccharide synthases and other glycosyltransferases that mediate the biosynthesis of the major non-cellulosic wall polysaccharides are not known. Nevertheless, emerging functional genomics and molecular genetics technologies are now allowing us to re-examine the central questions related to wall biosynthesis. The availability of the rice, Populus trichocarpa and Arabidopsis genome sequences, a variety of mutant populations, high-density genetic maps for cereals and other industrially important plants, high-throughput genome and transcript analysis systems, extensive publicly available genomics resources and an increasing armoury of analysis systems for the definition of candidate gene function will together allow us to take a systems approach to the description of wall biosynthesis in plants. [source]


The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis

PLANT CELL & ENVIRONMENT, Issue 4 2008
JIAN-FENG ZHANG
ABSTRACT The phytohormone abscisic acid (ABA) regulates plant growth and development as well as stress tolerance. To gain more insights into ABA signalling, a population of chemical-inducible activation-tagged Arabidopsis mutants was screened on the basis of the ABA effect on the inhibition of seed germination. Two novel ABA supersensitive mutants ABA supersensitive during germination1 (absg1) and absg2 were characterized as alleles of Dicer-like1 (DCL1) and HEN1, respectively, as microRNA biogenesis genes, and accordingly, these two mutants were renamed dcl1-11 and hen1-16. The dcl1-11 mutant was an ABA hypersensitive mutant for seed germination and root growth. Reverse transcriptase polymerase chain reaction assays revealed that the expression of ABA- and stress-responsive genes was increased in dcl1-11, as compared with the wild type (WT). Furthermore, the germination assay showed that dcl1-11 was also more sensitive to salt and osmotic stress. The hen1-16 mutant also showed supersensitive to ABA during seed germination. Further analysis showed that, among the microRNA biogenesis genes, all the other mutants were not only enhanced in sensitivity to ABA, salt and osmotic stress, but also enhanced the expression of ABA-responsive genes. In addition to the mutants in the microRNA biogenesis, the interruption of the production of crucial components of other small RNA pathways such as dcl2, dcl3 and dcl4 also caused ABA supersensitive during germination. [source]


Allometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO2

PLANT CELL & ENVIRONMENT, Issue 10 2007
CARL J. BERNACCHI
ABSTRACT Nitrogen concentrations in plant tissues can vary as a function of resource availability. Altered rates of plant growth and development under varying resource availabilities were examined to determine their effects on changes in whole-plant N use efficiency (NUE). Three species of old-field annuals were grown at broadly varying light, nutrient and water levels, and four species at varying atmospheric concentrations of CO2. Study results show highly variable N accrual rates when expressed as a function of plant age or size, but similar patterns of whole-plant N versus non-N biomass accrual over a wide range of environmental conditions. However, severely light-limited plants showed increased N versus biomass accrual for two of three species, and severely nutrient-limited plants had decreased N versus biomass accrual for all species. Whole-plant N accrual versus age and N versus biomass accrual increased under saturating water for two of three species. A marginally significant, modest decrease in N versus biomass accrual was found at high CO2 levels for two of four species. Physiological adjustments in NUE, expressed as N versus biomass accrual, were limited to environments with severely limited or overabundant resources. [source]


Brassinosteroids and plant function: some clues, more puzzles

PLANT CELL & ENVIRONMENT, Issue 3 2006
L. L. HAUBRICK
ABSTRACT The role of brassinosteroids (BRs) in plant function has been intensively studied in the last few years. Mutant analysis has demonstrated that the ability to synthesize, perceive and respond to BRs is essential to normal plant growth and development. Several key elements of BR response have been identified using both genetic and biochemical approaches, and molecular models that parallel Wingless (Wnt), transforming growth factor , (TGF,) and receptor tyrosine kinase (RTK) signalling in animals have been proposed. Many studies have demonstrated the role of BRs, alone and in interaction with other plant hormones, in processes such as cell elongation and seed germination. In contrast, little is known about how the sensing of BRs is connected to specific physiological responses such as stress resistance. There remain many open questions about how these connections are made. [source]


Intercellular adhesion and cell separation in plants

PLANT CELL & ENVIRONMENT, Issue 7 2003
M. C. JARVIS
ABSTRACT Adhesion between plant cells is a fundamental feature of plant growth and development, and an essential part of the strategy by which growing plants achieve mechanical strength. Turgor pressure provides non-woody plant tissues with mechanical rigidity and the driving force for growth, but at the same time it generates large forces tending to separate cells. These are resisted by reinforcing zones located precisely at the points of maximum stress. In dicots the reinforcing zones are occupied by networks of specific pectic polymers. The mechanisms by which these networks cohere vary and are not fully understood. In the Poaceae their place is taken by phenolic cross-linking of arabinoxylans. Whatever the reinforcing polymers, a targeting mechanism is necessary to ensure that they become immobilized at the appropriate location, and there are secretory mutants that appear to have defects in this mechanism and hence are defective in cell adhesion. At the outer surface of most plant parts, the tendency of cells to cohere is blocked, apparently by the cuticle. Mutants with lesions in the biosynthesis of cuticular lipids show aberrant surface adhesion and other developmental abnormalities. When plant cells separate, the polymer networks that join them are locally dismantled with surgical precision. This occurs during the development of intercellular spaces; during the abscission of leaves and floral organs; during the release of seeds and pollen; during differentiation of root cap cells; and during fruit ripening. Each of these cell separation processes has its own distinctive features. Cell separation can also be induced during cooking or processing of fruit and vegetables, and the degree to which it occurs is a significant quality characteristic in potatoes, pulses, tomatoes, apples and other fruit. Control over these technological characteristics will be facilitated by understanding the role of cell adhesion and separation in the life of plants. [source]


Tales from the underground: molecular

PLANT CELL & ENVIRONMENT, Issue 2 2003
F. PERSELLO-CARTIEAUX
ABSTRACT Colonization of the rhizosphere by micro-organisms results in modifications in plant growth and development. This review examines the mechanisms involved in growth promotion by plant growth-promoting rhizobacteria which are divided into indirect and direct effects. Direct effects include enhanced provision of nutrients and the production of phytohormones. Indirect effects involve aspects of biological control: the production of antibiotics and iron-chelating siderophores and the induction of plant resistance mechanisms. The study of the molecular basis of growth promotion demonstrated the important role of bacterial traits (motility, adhesion and growth rate) for colonization. New research areas emerge from the discovery that molecular signalling occurs through plant perception of eubacterial flagellins. Recent perspectives in the molecular genetics of cross-talking mechanisms governing plant,rhizobacteria interactions are also discussed. [source]


Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato

THE PLANT JOURNAL, Issue 5 2010
Savithri Nambeesan
Summary Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm), and their derivatives. We have expressed a yeast spermidine synthase (ySpdSyn) gene under constitutive (CaMV35S) and fruit-ripening specific (E8) promoters in Solanum lycopersicum (tomato), and determined alterations in tomato vegetative and fruit physiology in transformed lines compared with the control. Constitutive expression of ySpdSyn enhanced intracellular levels of Spd in the leaf, and transiently during fruit development, whereas E8 - ySpdSyn expression led to Spd accumulation early and transiently during fruit ripening. The ySpdSyn transgenic fruits had a longer shelf life, reduced shriveling and delayed decay symptom development in comparison with the wild-type (WT) fruits. An increase in shelf life of ySpdSyn transgenic fruits was not facilitated by changes in the rate of water loss or ethylene evolution. Additionally, the expression of several cell wall and membrane degradation-related genes in ySpdSyn transgenic fruits was not correlated with an extension of shelf life, indicating that the Spd-mediated increase in fruit shelf life is independent of the above factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was delayed in a CaMV35S - ySpdSyn genotype, with fruits accumulating higher levels of the antioxidant lycopene. Notably, whole-plant senescence in the transgenic plants was also delayed compared with WT plants. Together, these results provide evidence for a role of PAs, particularly Spd, in increasing fruit shelf life, probably by reducing post-harvest senescence and decay. [source]


The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis

THE PLANT JOURNAL, Issue 4 2008
Hiroshi Magome
Summary High-salinity stress affects plant growth and development. We have previously reported that overexpression of the salinity-responsive DWARF AND DELAYED FLOWERING 1 (DDF1) gene, encoding an AP2 transcription factor of the DREB1/CBF subfamily, causes dwarfism mainly by levels of reducing bioactive gibberellin (GA) in transgenic Arabidopsis. Here, we found that the GA 2-oxidase 7 gene (GA2ox7), which encodes a C20 -GA deactivation enzyme, is strongly upregulated in DDF1 -overexpressing transgenic plants. A loss-of-function mutation of GA2ox7 (ga2ox7-2) suppressed the dwarf phenotype of DDF1 -overexpressing plants, indicating that their GA deficiency is due to overexpression of GA2ox7. Transient overexpression of DDF1 activated the promoter of GA2ox7 in Arabidopsis leaves. A gel shift assay showed that DDF1 binds DRE-like motifs (GCCGAC and ATCGAC) in the GA2ox7 promoter. In Arabidopsis under high-salinity stress, six GA2ox genes, including GA2ox7, were upregulated. Furthermore, the ga2ox7-2 mutant was less growth retarded than wild-type Col under high-salinity stress. These results demonstrate that, under salinity stress, Arabidopsis plants actively reduce endogenous GA levels via the induction of GA 2-oxidase, with the result that growth is repressed for stress adaptation. [source]


Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris

THE PLANT JOURNAL, Issue 6 2008
Till K. Pellny
Summary Mitochondrial electron transport pathways exert effects on carbon,nitrogen (C/N) relationships. To examine whether mitochondria,N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in N. sylvestris seedlings showed classic responses to nitrate and sucrose availability. In contrast, CMSII showed an altered ,nitrate-sensing' phenotype with decreased sensitivity to C and N metabolites. The WT growth phenotype was restored in CMSII seedling roots by high nitrate plus sugars and in shoots by gibberellic acid (GA). Genome-wide cDNA-amplified fragment length polymorphism (AFLP) analysis of leaves from mature plants revealed that only a small subset of transcripts was altered in CMSII. Tissue abscisic acid content was similar in CMSII and WT roots and shoots, and growth responses to zeatin were comparable. However, the abundance of key transcripts associated with GA synthesis was modified both by the availability of N and by the CMSII mutation. The CMSII mutant maintained a much higher shoot/root ratio at low N than WT, whereas no difference was observed at high N. Shoot/root ratios were strikingly correlated with root amines/nitrate ratios, values of <1 being characteristic of high N status. We propose a model in which the amine/nitrate ratio interacts with GA signalling and respiratory pathways to regulate the partitioning of biomass between shoots and roots. [source]


PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis

THE PLANT JOURNAL, Issue 6 2006
Olca Titiz
Summary Vitamin B6 is an essential coenzyme for numerous metabolic enzymes and is a potent antioxidant. In plants, very little is known about its contribution to viability, growth and development. The de novo pathway of vitamin B6 biosynthesis has only been described recently and involves the protein PDX1 (pyridoxal phosphate synthase protein). Arabidopsis thaliana has three homologs of PDX1, two of which, PDX1.1 and PDX1.3, have been demonstrated as functional in vitamin B6 biosynthesis in vitro and by yeast complementation. In this study, we show that the spatial and temporal expression patterns of PDX1.1 and PDX1.3, investigated at the transcript and protein level, largely overlap, but PDX1.3 is more abundant than PDX1.1. Development of single pdx1.1 and pdx1.3 mutants is partially affected, whereas disruption of both genes causes embryo lethality at the globular stage. Detailed examination of the single mutants, in addition to those that only have a single functional copy of either gene, indicates that although these genes are partially redundant in vitamin B6 synthesis, PDX1.3 is more requisite than PDX1.1. Developmental distinctions correlate with the vitamin B6 content. Furthermore, we provide evidence that in addition to being essential for plant growth and development, vitamin B6 also plays a role in stress tolerance and photoprotection of plants. [source]


Over-expression of SOB5 suggests the involvement of a novel plant protein in cytokinin-mediated development

THE PLANT JOURNAL, Issue 5 2006
Jingyu Zhang
Summary Cytokinins are a class of phytohormones that play a critical role in plant growth and development. sob5-D, an activation-tagging mutant, shows phenotypes typical of transgenic plants expressing the Agrobacterium tumefaciens isopentenyltransferase (ipt) gene that encodes the enzyme catalyzing the first step of cytokinin biosynthesis. The sob5-D mutant phenotypes are caused by over-expression of a novel gene, SOB5. Sequence analysis places SOB5 in a previously uncharacterized family of plant-specific proteins. A translational fusion between SOB5 and the green fluorescent protein reporter was localized in the cytoplasm as well as associated with the plasma membrane when transiently expressed in onion epidermal cells. Analysis of transgenic plants harboring an SOB5:SOB5,, -glucuronidase (GUS) translational fusion under the control of the SOB5 promoter region showed GUS activity in vegetative tissues (hydathodes and trichomes of leaves, shoot meristems and roots) as well as in floral tissues (pistil tips, developing anthers and sepal vasculature). Cytokinin quantification analysis revealed that adult sob5-D plants accumulated higher levels of trans -zeatin riboside, trans -zeatin riboside monophosphate and isopentenyladenine 9-glucoside when compared to the wild-type. Consistent with this result, AtIPT3 and AtIPT7 were found to be up-regulated in a tissue-specific manner in sob5-D mutants. Physiological analysis of the sob5-D mutant demonstrated reduced responsiveness to exogenous cytokinin in both root-elongation and callus-formation assays. Taken together, our data suggest a role for the novel gene SOB5 in cytokinin-mediated plant development. [source]


shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels

THE PLANT JOURNAL, Issue 1 2005
Naoki Takahashi
Summary Brassinosteroids (BRs) are plant steroidal hormones that regulate plant growth and development. An Arabidopsis dwarf mutant, shrink1 -D (shk1-D), was isolated and the phenotype was shown to be caused by activation of the CYP72C1 gene. CYP72C1 is a member of the cytochrome P450 monooxygenase gene family similar to BAS1/CYP734A1 that regulates BR inactivation. shk1-D has short hypocotyls in both light and dark, and short petioles and siliques. The seeds are also shortened along the longitudinal axis indicating CYP72C1 controls cell elongation. The expression of CPD, TCH4 and BAS1 were altered in CYP72C1 overexpression transgenic lines and endogenous levels of castasterone, 6-deoxocastasterone and 6-deoxotyphasterol were also altered. Unlike BAS1/CYP734A1 the expression of CYP72C1 was not changed by application of exogenous brassinolide. We propose that CYP72C1 controls BR homeostasis by modulating the concentration of BRs. [source]