Plant Functional Groups (plant + functional_groups)

Distribution by Scientific Domains


Selected Abstracts


Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment

FUNCTIONAL ECOLOGY, Issue 2 2009
Susan E. Ward
Summary 1Northern hemisphere peatlands are globally important stores of organic soil carbon. We examined effects of plant functional group identity on short-term carbon (C) flux in an ombrotrophic peatland in northern England, UK, by selectively removing one of each of the three dominant plant functional groups (ericoid dwarf-shrubs, graminoids and bryophytes). Carbon dynamics were quantified by a combination of CO2 flux measurements and 13CO2 stable isotope pulse labelling approaches. 2Significant effects of plant functional group removals on CO2 fluxes and tracer 13C uptake and turnover were detected. Removal of ericoid dwarf-shrubs had the greatest influence on gross CO2 flux, increasing rates of respiration and photosynthesis by > 200% relative to the undisturbed control. After pulse labelling with 13CO2, we found that turnover of recent photosynthate, measured as respired 13CO2, was also greatest in the absence of dwarf-shrubs. 3Analysis of 13C tracer enrichment in leaf tissues from all plant removal treatments showed that the rate of fixation of 13CO2 and turnover of 13C labelled photosynthate in leaf tissue was greatest in graminoids and lowest in bryophytes. Furthermore, graminoid leaf 13C enrichment was greatest when growing in the absence of dwarf-shrubs, suggesting that the presence of dwarf-shrubs reduced the photosynthetic activity of graminoids. 4We conclude that plant functional groups differentially influence the uptake and short-term flux of carbon in peatlands, suggesting that changes in the functional composition of vegetation resulting from global change have the potential to alter short-term patterns of carbon exchange in peatland. [source]


Ecosystem properties determined by plant functional group identity

JOURNAL OF ECOLOGY, Issue 2 2010
Jennie R. McLaren
Summary 1.,Ecosystem properties may be determined by the number of different species or groups of species in a community, the identity of those groups, and their relative abundance. The mass ratio theory predicts that the effect of species or groups of species on ecosystem properties will be dependent on their proportional abundance in a community. 2.,Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a natural grassland in northern Canada to examine the role of group identity in determining both ecosystem properties and biomass compensation by remaining species. Removals were conducted across two different environmental treatments (fertilization and fungicide) to examine the context dependency of functional group identity effects. 3.,The degree of biomass compensation in the first 4 years after removal was influenced by the identity of the functional group removed and also of those remaining. When graminoids were removed, none of the remaining functional groups compensated for the loss of biomass. Graminoids partially compensated for the removal of forbs or legumes, with the degree of compensation depending on environmental treatments. 4.,Light interception, soil moisture and soil nutrients were all influenced by functional group identity, with graminoids having a greater impact than expected based on their biomass contribution to the community. Legumes, in contrast, had very little effect on any of the ecosystem properties measured. 5.,For most ecosystem properties measured, the role of plant functional groups was not context dependent; functional groups had the same effect on ecosystem properties regardless of fertilization or fungicide treatments. 6.,Synthesis. We have shown that the effects of losing a functional group do not solely depend on the group's dominance. In this northern grassland, there are greater effects of losing graminoids than one would predict based on their biomass contributions to the community, and functional group identity plays a critical role in determining the effects of diversity loss. [source]


Linkages between plant functional composition, fine root processes and potential soil N mineralization rates

JOURNAL OF ECOLOGY, Issue 1 2009
Dario A. Fornara
Summary 1Plant functional composition may indirectly affect fine root processes both qualitatively (e.g. by influencing root chemistry) and quantitatively (e.g. by influencing root biomass and thus soil carbon (C) inputs and the soil environment). Despite the potential implications for ecosystem nitrogen (N) cycling, few studies have addressed the linkages between plant functional composition, root decay, root detritus N dynamics and soil N mineralization rates. 2Here, using data from a large grassland biodiversity experiment, we first show that plant functional composition affected fine root mass loss, root detritus N dynamics and net soil N mineralization rates through its effects on root chemistry rather than on the environment of decomposition. In particular, the presence of legumes and non-leguminous forbs contributed to greater fine root decomposition which in turn enhanced root N release and net soil N mineralization rates compared with C3 and C4 grasses. 3Second, we show that all fine roots released N immediately during decomposition and showed very little N immobilization regardless of plant composition. As a consequence, there was no evidence of increased root or soil N immobilization rates with increased below-ground plant biomass (i.e. increased soil C inputs) even though root biomass negatively affected root decay. 4Our results suggest that fine roots represent an active soil N pool that may sustain plant uptake while other soil N forms are being immobilized in microbial biomass and/or sequestered into soil organic matter. However, fine roots may also represent a source of recalcitrant plant detritus that is returned to the soil (i.e. fine roots of C4 and C3 grasses) and that can contribute to an increase in the soil organic matter pool. 5Synthesis. An important implication of our study is that the simultaneous presence of different plant functional groups (in plant mixtures) with opposite effects on root mass loss, root N release and soil N mineralization rates may be crucial for sustaining multiple ecosystem services such as productivity and soil C and N sequestration in many N-limited grassland systems. [source]


Plant functional group composition and large-scale species richness in European agricultural landscapes

JOURNAL OF VEGETATION SCIENCE, Issue 1 2008
Jaan Liira
Abstract Question: Which are the plant functional groups responding most clearly to agricultural disturbances? Which are the relative roles of habitat availability, landscape configuration and agricultural land use intensity in affecting the functional composition and diversity of vascular plants in agricultural landscapes? Location: 25 agricultural landscape areas in seven European countries. Methods: We examined the plant species richness and abundance in 4 km × 4 km landscape study sites. The plant functional group classification was derived from the BIOLFLOR database. Factorial decomposition of functional groups was applied. Results: Natural habitat availability and low land use intensity supported the abundance and richness of perennials, sedges, pteridophytes and high nature quality indicator species. The abundance of clonal species, C and S strategists was also correlated with habitat area. An increasing density of field edges explained a decrease in richness of high nature quality species and an increase in richness of annual graminoids. Intensive agriculture enhanced the richness of annuals and low nature quality species. Conclusions: Habitat patch availability and habitat quality are the main drivers of functional group composition and plant species richness in European agricultural landscapes. Linear elements do not compensate for the loss of habitats, as they mostly support disturbance tolerant generalist species. In order to conserve vascular plant species diversity in agricultural landscapes, the protection and enlargement of existing patches of (semi-) natural habitats appears to be more effective than relying on the rescue effect of linear elements. This should be done in combination with appropriate agricultural management techniques to limit the effect of agrochemicals to the fields. [source]


Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands

JOURNAL OF VEGETATION SCIENCE, Issue 1 2007
David W. Peterson
Abstract Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4-grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3-grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4,7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N-fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire-resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light-demanding grasses and forbs. [source]


Diversity loss, recruitment limitation, and ecosystem functioning: lessons learned from a removal experiment

OIKOS, Issue 3 2001
Amy J. Symstad
A five-year removal experiment in which plant functional group diversity was manipulated found strong limitation of ecosystem functioning caused by the differing abilities of remaining functional groups to recruit into space left unoccupied by the plants removed. We manipulated functional group diversity and composition by removing all possible combinations of zero, one, or two plant functional groups (forbs, C3 graminoids, and C4 graminoids), as well as randomly chosen biomass at levels corresponding to the functional group removals, from a prairie grassland community. Although random biomass removal treatments showed no significant effect of removing biomass in general on ecosystem functions measured (P>0.05), the loss of particular functional groups led to significant differences in above- (P<0.001) and belowground (P<0.001) biomass, rooting-zone (P=0.001) and leached (P=0.01) nitrogen, nitrogen mineralization (P<0.001), and community drought resistance (P=0.002). Many of these differences stemmed from the marked difference in the ways remaining functional groups responded to the experimental removals. Strong recruitment limitation of C4 graminoids resulted in large areas of open ground, high nutrient leaching, and high community drought resistance in plots containing just this functional group. In contrast, rhizomatous C3 graminoids quickly colonized space and used soil resources made available by the removal of other groups, leading to lower soil nitrate in plots containing C3 graminoids. These effects of recruitment limitation on ecosystem functioning illustrate possible effects of diversity loss not captured by synthetic experiments in which diversity gradients are created by adding high densities of seeds to bare soil. [source]


An experimental test of the effect of plant functional group diversity on arthropod diversity

OIKOS, Issue 2 2000
Amy J. Symstad
Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect the composition and diversity of the herbivores and even higher trophic levels associated with that community. We tested this hypothesis by sampling arthropods with a vacuum sampler (34,531 individuals of 494 species) from an experiment in which we manipulated plant functional group richness and composition. Plant manipulations included all combinations of three functional groups (forbs, C3 graminoids, and C4 graminoids) removed zero, one, or two at a time from grassland plots at Cedar Creek Natural History Area, MN. Although total arthropod species richness was unrelated to plant functional group richness or composition, the species richness of some arthropod orders was affected by plant functional group composition. Two plant characteristics explained most of the effects of plant functional groups on arthropod species richness. Nutritional quality, a characteristic related to ecosystem functioning, and taxonomic diversity, a characteristic not used to designate plant functional groups, seemed to affect arthropod species richness both directly and indirectly. Thus, plant functional groups designated for their effects on ecosystem processes will only be partially relevant to consumer diversity and abundance. [source]