Home About us Contact | |||
Plant Community Diversity (plant + community_diversity)
Selected AbstractsNegative per capita effects of purple loosestrife and reed canary grass on plant diversity of wetland communitiesDIVERSITY AND DISTRIBUTIONS, Issue 4 2006Shon S. Schooler ABSTRACT Invasive plants can simplify plant community structure, alter ecosystem processes and undermine the ecosystem services that we derive from biotic diversity. Two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), are becoming the dominant species in many wetlands across temperate North America. We used a horizontal, observational study to estimate per capita effects (PCEs) of purple loosestrife and reed canary grass on plant diversity in 24 wetland communities in the Pacific Northwest, USA. Four measures of diversity were used: the number of species (S), evenness of relative abundance (J), the Shannon,Wiener index (H,) and Simpson's index (D). We show that (1) the PCEs on biotic diversity were similar for both invasive species among the four measures of diversity we examined; (2) the relationship between plant diversity and invasive plant abundance ranges from linear (constant slope) to negative exponential (variable slope), the latter signifying that the PCEs are density-dependent; (3) the PCEs were density-dependent for measures of diversity sensitive to the number of species (S, H,, D) but not for the measure that relied solely upon relative abundance (J); and (4) invader abundance was not correlated with other potential influences on biodiversity (hydrology, soils, topography). These results indicate that both species are capable of reducing plant community diversity, and management strategies need to consider the simultaneous control of multiple species if the goal is to maintain diverse plant communities. [source] Do biotic interactions shape both sides of the humped-back model of species richness in plant communities?ECOLOGY LETTERS, Issue 7 2006Richard Michalet Abstract A humped-back relationship between species richness and community biomass has frequently been observed in plant communities, at both local and regional scales, although often improperly called a productivity,diversity relationship. Explanations for this relationship have emphasized the role of competitive exclusion, probably because at the time when the relationship was first examined, competition was considered to be the significant biotic filter structuring plant communities. However, over the last 15 years there has been a renewed interest in facilitation and this research has shown a clear link between the role of facilitation in structuring communities and both community biomass and the severity of the environment. Although facilitation may enlarge the realized niche of species and increase community richness in stressful environments, there has only been one previous attempt to revisit the humped-back model of species richness and to include facilitative processes. However, to date, no model has explored whether biotic interactions can potentially shape both sides of the humped-back model for species richness commonly detected in plant communities. Here, we propose a revision of Grime's original model that incorporates a new understanding of the role of facilitative interactions in plant communities. In this revised model, facilitation promotes diversity at medium to high environmental severity levels, by expanding the realized niche of stress-intolerant competitive species into harsh physical conditions. However, when environmental conditions become extremely severe the positive effects of the benefactors wane (as supported by recent research on facilitative interactions in extremely severe environments) and diversity is reduced. Conversely, with decreasing stress along the biomass gradient, facilitation decreases because stress-intolerant species become able to exist away from the canopy of the stress-tolerant species (as proposed by facilitation theory). At the same time competition increases for stress-tolerant species, reducing diversity in the most benign conditions (as proposed by models of competition theory). In this way our inclusion of facilitation into the classic model of plant species diversity and community biomass generates a more powerful and richer predictive framework for understanding the role of plant interactions in changing diversity. We then use our revised model to explain both the observed discrepancies between natural patterns of species richness and community biomass and the results of experimental studies of the impact of biodiversity on the productivity of herbaceous communities. It is clear that explicit consideration of concurrent changes in stress-tolerant and competitive species enhances our capacity to explain and interpret patterns in plant community diversity with respect to environmental severity. [source] Effects of genetic impoverishment on plant community diversityJOURNAL OF ECOLOGY, Issue 5 2003Rosemary E. Booth Summary 1Established individuals removed at random from populations of 11 long-lived herbaceous species coexisting in a local area of ancient limestone pasture at Cressbrookdale in North Derbyshire were subjected to clonal propagation to produce stocks of genetically identical individuals sufficient to create 36 model communities identical in species composition but widely contrasted in genetic diversity. 2Three levels of genetic diversity were imposed. In one treatment, all individuals of each species were genetically unique. The second contained four randomly selected genotypes of each species. In the third, there was no genetic diversity in any of the species but each community contained a unique combination of genotypes. 3Over a period of 5 years the communities were allowed to develop in microcosms containing natural rendzina soil and exposed to a standardized regime of simulated grazing and trampling. The treatments were maintained by the removal of flowers, immature seed-heads and seedlings originating from the seed-bank and seed rain. Point quadrat surveys were used to monitor changes in species composition and diversity in the three experimental treatments. 4During the experiment a distinction rapidly developed between five canopy dominants and five subordinates, a process that caused the vegetation structure to closely resemble that occurring at Cressbrookdale. 5A gradual loss of species diversity occurred in all three treatments but by the end of the fifth growing season species diversity was higher in the most genetically diverse communities. 6Ordination of the 36 communities at intervals over a 5-year period revealed a gradual convergence in the species composition of the 4-genotype and 16-genotype communities and this effect was more strongly developed in the latter. A comparable process was not observed in the 1-genotype communities, suggesting that interaction between particular genotypes of different species in local neighbourhoods may be an essential part of the mechanism that determines the predictable composition of a mature pasture community. 7It is concluded that, under the conditions of this experiment, genetic diversity within component species reduced the rate at which species diversity declined. The relative importance in this effect of factors such as greater disease resistance and moderated competitive interactions remains uncertain. [source] The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warmingOIKOS, Issue 8 2007Kari Klanderud Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs). Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala. These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity. [source] Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communitiesOIKOS, Issue 6 2007Gerlinde B. De Deyn Interactions between above- and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above- and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial-feeding and 3) reduce plant-feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species-rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni-carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom-up control of the nematodes. However, our results show that above- and belowground insect herbivores may facilitate root-feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores. [source] Soil fertility, heterogeneity, and microbes: towards an integrated understanding of grassland structure and dynamicsAPPLIED VEGETATION SCIENCE, Issue 1 2009Heather L. Reynolds Abstract Objective: To highlight the need and the potential for an integrated understanding of three key soil-based drivers of plant community structure and dynamics , soil fertility, soil heterogeneity, and microbes. Location: European and North American grasslands. Methods: Review and discussion of conceptual models and empirical literature, including examples of observational and manipulative studies from both natural and restored grassland communities. Results and Conclusions: In general, the results of empirical studies on soil fertility, soil heterogeneity, and soil microbes in grassland communities do not support expectations of common conceptual models. Ecological theory assumes a unimodal relationship between soil fertility and plant community diversity, yet empirical relationships from grassland communities are variable, the mechanisms underlying these variable patterns are not yet well understood, and there is mixed success at manipulating soil fertility to facilitate restorations. While theory predicts that increased soil heterogeneity will lead to increased plant community diversity, results of experimental manipulations of soil heterogeneity often show the opposite. Of two major conceptual models proposed for how microbes structure plant communities, there is little support for the hypothesis of microbially mediated niche partitioning. Plant-microbe feedbacks do have significant empirical support to date and there is increasing application of positive feedback dynamics in restoration, yet field tests of feedback dynamics remain limited. We suggest that an understanding of interactions between these soil drivers may help to resolve discrepancies between conceptual models and empirical results, improving our understanding of grasslands and our ability to restore them. [source] |