Plankton

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Plankton

  • plankton community
  • plankton sample

  • Selected Abstracts


    Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity

    FRESHWATER BIOLOGY, Issue 2 2003
    Thomas Hein
    SUMMARY 1.,The elemental composition, the proportion of living organic carbon and the carbon stable isotope signatures of particulate organic matter (POM) were determined in a large river floodplain system in order to elucidate the major carbon sources in relation to the hydrological conditions over a 13-month period. 2.,Two floodplain segments and the main channel of the River Danube downstream of Vienna (Austria), were compared on the basis of discharge and water age estimations. The more dynamic floodplain was connected to the main channel for 46% of the study period and drained up to 12% of total discharge at high water. 3.,The mean C : N ratio and ,13C signature of the POM increased from the floodplain site that was more isolated from the river (6.6; ,33,) to the main channel (8.4; ,25,). At the dynamic floodplain site, the C : N ratio and the ,13C signature of the POM increased with hydrological connectivity (expressed as water age). 4.,Only during flood events (4% frequency of occurrence), a considerable input of riverine POM was observed. This input was indicated by a C : N ratio of the POM pool of more than 10, the amount of detrital carbon (>80% of the total POM pool) and a ,13C signature of POM of more than ,25, in the dynamic floodplain. 5.,Plankton derived carbon, indicated by C : N ratios less than eight and ,13C values lower than ,25,, dominated the particulate organic carbon (POC) pool at both floodplain sites, emphasising the importance of local (autochthonous) production. Phytoplankton was the major plankton compartment at the dynamic site, with highest biomasses at medium water ages. 6.,At the dynamic floodplain site, the Danube Restoration Project has enhanced the duration of upstream surface connection with the main channel from 4 to 46% frequency of occurrence. Therefore, the export of living POC to the main channel is now established during phases of maximum phytoplankton production and doubled the estimated total export of non-refractory POM compared with prerestoration conditions. [source]


    Influence of Environmental Heterogeneity on the Structure of Testate Amoebae (Protozoa, Rhizopoda) Assemblages in the Plankton of the Upper Paraná River Floodplain, Brazil

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 2 2003
    Luiz Felipe Machado Velho
    Abstract In freshwater environments, testate amoebae are usually found associated with macrophytes and sediments and many studies have suggested that their occurrence in plankton samples is accidental. This implies that predictable patterns detected in planktonic assemblages should not be observed in testate amoebae assemblages. This hypothesis was tested in this study. Plankton samples were collected from different environments in the Upper Paraná River floodplain. Results show that patterns in species composition and abundance of testate amoebae are predictable, and that dominant species tend to present characteristic shell morphology in hydrologically different environments. We suggest that testate amoebae must be routinely included in plankton ecology studies, at least in floodplain environments. [source]


    Impact of Copper Sulfate on Plankton in Channel Catfish Nursery Ponds

    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 1 2009
    Charles C. Mischke
    Many fish culturists are interested in applying copper sulfate pentahydrate (CSP) to channel catfish, Ictalurus punctatus, nursery ponds as a prophylactic treatment for trematode infection and proliferative gill disease by killing snails and Dero sp., respectively, before stocking fry. However, copper is an algaecide and may adversely affect phytoplankton and zooplankton populations. We evaluated the effects of prophylactic use of copper sulfate in catfish nursery ponds on water quality and phytoplankton and zooplankton populations. In 2006, treatments of 0 mg/L CSP, 3 mg/L CSP (0.77 mg/L Cu), and 6 mg/L CSP (1.54 mg/L Cu) were randomly assigned to 0.04-ha ponds. In 2007, only treatments of 0 and 3 mg/L CSP were randomly assigned to the 16 ponds. Ponds treated with CSP had significantly higher pH and significantly lower total ammonia concentrations. Treatment of both CSP rates increased total algal concentrations but reduced desirable zooplankton groups for catfish culture. CSP has been shown to be effective in reducing snail populations at the rate used in this study. CSP treatment also appears to be beneficial to the algal bloom, shifting the algal population to green algae and increasing total algal biomass within 1 wk after CSP treatment. Although zooplankton populations were adversely affected, populations of important zooplankton to catfish fry began rebounding 6,12 d after CSP treatment. Therefore, if CSP is used to treat catfish fry ponds of similar water composition used in this study, fry should not be stocked for about 2 wk after CSP application to allow time for the desirable zooplankton densities to begin increasing. [source]


    Density effects of silver carp Hypophthalmichthys molitrix and catla Catla catla on the production system in all-male freshwater prawn,finfish polyculture ponds

    AQUACULTURE RESEARCH, Issue 10 2010
    Sheikh Md.
    Abstract The effects of three different combinations of silver carp Hypophthalmichthys molitrix and catla Catla catla density on the production system in all-male freshwater prawn,finfish polyculture ponds were evaluated in triplicate. The stocking density of silver carp and catla, respectively, were maintained at 2000 and 500 ha,1 in treatment SC2000C500, 1500 and 1000 ha,1 in treatment SC1500C1000 and 1000 and 1500 ha,1 in treatment SC1000C1500. Male freshwater prawn Macrobrachium rosenbergii and small fish mola Amblypharyngodon mola densities were fixed in all treatments at 12 000 and 20 000 ha,1 respectively. Management practices were same for all treatments. Blue-clawed male prawns were harvested twice during the 122-day culture at 15-day intervals before the final harvest. Plankton and macro-benthos abundance and water quality parameters (except transparency and chlorophyll a) did not vary significantly (P>0.05) among treatments. Mean final weights of both silver carp and catla were decreased with the increasing of their own stocking density. The treatment SC1500C1000 resulted in 25,32% increased net production of silver carp plus catla (461 kg ha,1) and 20,21% increased net production of all species combined (874 kg ha,1) as compared with the other treatments, although the differences in production of prawn and mola among treatments were not significant. [source]


    A cross-ecosystem comparison of the strength of trophic cascades

    ECOLOGY LETTERS, Issue 6 2002
    Jonathan B. Shurin
    Abstract Although trophic cascades (indirect effects of predators on plants via herbivores) occur in a wide variety of food webs, the magnitudes of their effects are often quite variable. We compared the responses of herbivore and plant communities to predator manipulations in 102 field experiments in six different ecosystems: lentic (lake and pond), marine, and stream benthos, lentic and marine plankton, and terrestrial (grasslands and agricultural fields). Predator effects varied considerably among systems and were strongest in lentic and marine benthos and weakest in marine plankton and terrestrial food webs. Predator effects on herbivores were generally larger and more variable than on plants, suggesting that cascades often become attenuated at the plant,herbivore interface. Top-down control of plant biomass was stronger in water than on land; however, the differences among the five aquatic food webs were as great as those between wet and dry systems. [source]


    Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses

    ENVIRONMENTAL MICROBIOLOGY, Issue 1 2010
    Asuncion Martinez
    Summary Phosphonates (Pn), compounds with a direct C,P bond instead of the more common C,O,P ester bond, constitute a significant fraction of marine dissolved organic phosphorus and recent evidence suggests that they may be an alternative source of P for marine microorganisms. To further characterize the microorganisms and pathways involved in Pn utilization, we screened bacterioplankton genomic libraries for their ability to complement an Escherichia coli strain unable to use Pns as a P source. Using this approach we identified a phosphonatase pathway as well as a novel pair of genes that allowed utilization of 2-aminoethylphosphonate (2-AEPn) as the sole P source. These pathways are present in diverse bacteria common in marine plankton including representatives of Proteobacteria, Planctomycetes and Cyanobacteria. Analysis of metagenomic databases for Pn utilization genes revealed that they are widespread and abundant among marine bacteria, suggesting that Pn metabolism is likely to play an important role in P-depleted surface waters, as well as in the more P-rich deep-water column. [source]


    Comparative analysis of genome fragments of Acidobacteria from deep Mediterranean plankton

    ENVIRONMENTAL MICROBIOLOGY, Issue 10 2008
    Achim Quaiser
    Summary Acidobacteria constitute a still poorly studied phylum that is well represented in soils. Recent studies suggest that members of this phylum may be also abundant in deep-sea plankton, but their relative abundance and ecological role in this ecosystem are completely unknown. A recent screening of three metagenomic deep-sea libraries of bathypelagic plankton from the South Atlantic (1000 m depth), the Adriatic (1000 m depth) and the Ionian (3000 m depth) seas in the Mediterranean revealed an unexpected relative proportion of acidobacterial fosmids, which affiliated to the Solibacterales (Group 3), to the Group 11 and, most frequently, to the Group 6 of this diverse phylum. Here, we present the comparative analysis of 11 acidobacterial genome fragments containing the rrn operon from these Mediterranean libraries. A highly conserved syntenic region spanning up to 30 kb and containing up to 25 open reading frames was shared by Group 6 Acidobacteria. Synteny was also partially conserved in distantly related acidobacterial genome fragments derived from a metagenomic soil library, indicating a remarkable conservation of this genomic region within these Acidobacteria. A search for Acidobacteria -specific hits in directly comparable, available fosmid-end sequences from soil and marine metagenomic libraries showed a significant increase of their relative proportion in plankton libraries as a function of increasing depth reaching, at high depth, levels nearly comparable to those of soil. Thus, our results suggest that Acidobacteria are abundant and represent a significant proportion of the microbial community in the deep-sea ecosystem. [source]


    High local and global diversity of Flavobacteria in marine plankton

    ENVIRONMENTAL MICROBIOLOGY, Issue 5 2007
    Cecilia Alonso
    Summary Members of the phylum Bacteroidetes are among the most abundant microbes in coastal marine waters, but it is unclear to which extent the diversity within this phylum is covered by currently available 16S rRNA gene sequence information. We, thus, obtained a comprehensive collection of sequence types affiliated with Bacteroidetes in coastal North Sea surface waters and we compared this local diversity with the available sequences of marine planktonic and other aquatic Bacteroidetes. Approximately 15% of > 600 clones from two libraries (August 2000, June 2001) were related to Bacteroidetes, specifically to the Flavobacteria. Local diversity appeared to be almost exhaustively sampled. However, the diversity of the two libraries virtually did not overlap, indicating a pronounced temporal variability of the planktonic Flavobacteria assemblage. The majority of sequence types represented novel phylogenetic lineages, adding 6,7% to the currently known genera and species of Bacteroidetes in marine waters. Different diversity estimators suggested that so far only approximately half of the global diversity of planktonic marine Bacteroidetes has been described. The data set moreover indicated that cultivation-independent techniques and isolation approaches have recovered almost equally sized and virtually non-overlapping fractions of the currently known diversity within this phylum. Interestingly, only 15% of genera of Bacteroidetes from various aquatic environments appear to occur in more than one habitat type. [source]


    Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics

    ENVIRONMENTAL MICROBIOLOGY, Issue 6 2003
    í Nedoma
    Summary ELF®97 phosphate (ELFP) is a phosphatase substrate which produces ELF®97 alcohol (ELFA), a fluorescent water-insoluble product, upon hydrolysis. We studied the kinetics of ELFA precipitation in freshwater samples at levels of total plankton and single phytoplankton cells, and tested the suitability of ELFP for measurement of surface-bound algal extracellular phosphatases. Samples from acidic Ple,né Lake (pH , 5; high phosphatase activity) and eutrophic ,ímov reservoir (pH ,7,10; moderate phosphatase activity) were incubated with ELFP for 5,300 min, fixed with HgCl2 and filtered through polycarbonate filters. Relative fluorescence of filter-retained ELFA precipitates was quantified with image analysis. Time-courses of ELFA formation exhibited lag periods followed by finite periods of linear increase. In Ple,né Lake, lag-times were shorter (1,18 min) and rates of increase in ELFA fluorescence higher (by ,2 orders of magnitude) than in ,ímov reservoir (lag-times 30,200 min). Similar patterns of ELFA formation kinetics were also observed in Ple,né Lake samples in cuvette spectrofluorometer measurements (which failed in ,ímov reservoir). Linear regression of seasonal data on rates of increase in ELFA fluorescence from image cytometry and spectrofluorometry (r2 = 0.65, n = 10) allowed for calibration of image cytometry in terms of amount of cell-associated ELFA. Preliminary measurements of extracellular phosphatase activities of several algae resulted in rates (10,2260 fmol cell,1 h,1) which are comparable to data reported in the literature for algal cultures. [source]


    Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2002
    Sabino Del Vento
    Abstract Phytoplankton and bacteria play an important role on the biogeochemical cycles of persistent organic pollutants (POPs). However, experimental data and quantitative knowledge of the kinetics of uptake and depuration of most POPs by bacteria and phytoplankton are scarce. In the present paper, a procedure to predict the sorption kinetics to bacteria and phytoplankton is developed. The prediction method is the combination of a mechanistic model for sorption and quantitative structure,activity relationships relating bioconcentration factors and membrane permeability to the chemical physical-chemical properties. The model consists of two compartments where the first compartment is the cellular surface and the second compartment is the cell biomass or matrix. Equations for estimating uptake and depuration rate constants into the matrix and adsorption and desorption rate constants onto the surface are obtained. These expressions depend on the physical-chemical properties of the chemical, the environmental temperature, the microorganism size, and species-specific quality of organic matter. While microorganism shape has a secondary influence on uptake dynamics, microorganism size and chemical hydrophobicity arise as the key factors controlling the kinetics of POP incorporation into bacteria and plankton. Uptake, depuration, adsorption, and desorption rate constants are reported for POPs such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dioxins and furans (PCDD/Fs), and POPs of emerging concern, such as polybrominated diphenyl ethers (PBDEs). Finally, implications of uptake and depuration dynamics on the biogeochemical cycling of POPs are discussed. [source]


    Origin of planktotrophy,evidence from early molluscs

    EVOLUTION AND DEVELOPMENT, Issue 4 2006
    Alexander Nützel
    SUMMARY The size of early ontogenetic shells (protoconchs) of ancient benthic molluscs suggests that feeding larvae occurred at about 490 myr (approximately, transition from Cambrian to Ordovician). Most studied Ordovician protoconchs were smaller than Cambrian ones, indicating smaller Ordovician eggs and hatchlings. This suggests substitution of nutritious reserve matter such as yolk by plankton as an energy source for larvae. The observed size change represents the first direct empiric evidence for a late Cambrian to Ordovician switch to planktotrophy in invertebrate larvae. It corroborates previous hypotheses about a possible polyphyly of planktotrophy. These hypotheses were primarily based on molecular clock data of extant clades with different types of larva, change in the overall body size, as well as increasing predation pressure on Early Paleozoic sea floors. The Early Ordovician is characterized by an explosive radiation of benthic suspension feeders and it was suggested that planktotrophy would prolongate escape from benthic predation on hatchlings. This biological escalation hypothesis does not fully explain why planktotrophy and suspension feeding became important at the same time, during a major biodiversification. An additional factor that probably included availability of nutrients must have played a role. We speculate that an increasing nutrient supply and availability of photoautotrophic plankton in world oceans have facilitated both planktotrophy and suspension feeding, which does not exclude a contemporaneous predation-driven escalation. It is very likely that the evolution of planktotrophy as well as increasing predation contributed to the Ordovician radiation. [source]


    Evolution and development of gastropod larval shell morphology: experimental evidence for mechanical defense and repair

    EVOLUTION AND DEVELOPMENT, Issue 1 2001
    Carole S. Hickman
    SUMMARY The structural diversity of gastropod veliger larvae offers an instructive counterpoint to the view of larval forms as conservative archetypes. Larval structure, function, and development are fine-tuned for survival in the plankton. Accordingly, the study of larval adaptation provides an important perspective for evolutionary-developmental biology as an integrated science. Patterns of breakage and repair in the field, as well as patterns of breakage in arranged encounters with zooplankton under laboratory conditions, are two powerful sources of data on the adaptive significance of morphological and microsculptural features of the gastropod larval shell. Shells of the planktonic veliger larvae of the caenogastropod Nassarius paupertus[Gould] preserve multiple repaired breaks, attributed to unsuccessful zooplankton predators. In culture, larvae isolated from concentrated zooplankton samples rapidly repaired broken apertural margins and restored the "ideal" apertural form, in which an elaborate projection or "beak" covers the head of the swimming veliger. When individuals with repaired apertures were reintroduced to a concentrated mixture of potential zooplankton predators, the repaired margins were rapidly chipped and broken back. The projecting beak of the larval shell is the first line of mechanical defense, covering the larval head and mouth and potentially the most vulnerable part of the shell to breakage. Patterns of mechanical failure show that spiral ridges do reinforce the beak and retard breakage. The capacity for rapid shell repair and regeneration, and the evolution of features that resist or retard mechanical damage, may play a more prominent role than previously thought in enhancing the ability of larvae to survive in the plankton. [source]


    Key factors influencing transport of white shrimp (Litopenaeus setiferus) post-larvae into the Ossabaw Sound system, Georgia, USA

    FISHERIES OCEANOGRAPHY, Issue 3 2005
    E. L. WENNER
    Abstract We examined conditions under which white shrimp (Litopenaeus setiferus) post-larvae enter an estuarine channel receiving high freshwater discharge and one receiving negligible discharge in the Ossabaw Sound system of Georgia, USA, during 1997 and 1998. We used surface nets to collect plankton over several 14-day periods, during which consecutive tows were made at night against the flooding current at stations in the inlet channels. During these sampling periods, additional intensive periods of around-the-clock surface and near-bottom (using a bottom sled) plankton tows were made. Data on oceanographic conditions were obtained from moored instrument arrays and shipboard sampling. We identified three key factors that influenced the densities of post-larval white shrimp in time and space within the Ossabaw inlet system. The first factor was a critical minimum temperature of coastal waters of 27,28°C. Once the threshold temperature was reached, lunar tidal stage became a key factor when the full duration of the flood tide coincided with darkness during peak ingress. This peak also coincided with an increase in water level within the system by more than 0.2 m, which induced an additional influx of water that reinforces the flood current over the ingress period. Our results suggest that the direction of subtidal currents (into or out of the system) becomes a significant factor in post-larval ingress when influx of water coincides with the time of favorable temperature conditions and nighttime flood tides. [source]


    Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton?

    FRESHWATER BIOLOGY, Issue 3 2010
    CARL D. SAYER
    Summary 1. Seasonal relationships between macrophyte and phytoplankton populations may alter considerably as lakes undergo eutrophication. Understanding of these changes may be key to the interpretation of ecological processes operating over longer (decadal-centennial) timescales. 2. We explore the seasonal dynamics of macrophytes (measured twice in June and August) and phytoplankton (measured monthly May,September) populations in 39 shallow lakes (29 in the U.K. and 10 in Denmark) covering broad gradients for nutrients and plant abundance. 3. Three site groups were identified based on macrophyte seasonality; 16 lakes where macrophyte abundance was perennially low and the water generally turbid (,turbid lakes'); 7 where macrophyte abundance was high in June but low in August (,crashing' lakes); and 12 where macrophyte abundance was high in both June and August (,stable' lakes). The seasonal behaviour of the crashing and turbid lakes was extremely similar with a consistent increase in nutrient concentrations and chlorophyll- a over May,September. By contrast in the stable lakes, seasonal changes were dampened with chlorophyll- a consistently low (<10,15 ,g L,1) over the entire summer. The crashing lakes were dominated by one or a combination of Potamogeton pusillus, Potamogeton pectinatus and Zannichellia palustris, whereas Ceratophyllum demersum and Chara spp. were more abundant in the stable lakes. 4. A long-term loss of macrophyte species diversity has occurred in many shallow lakes affected by eutrophication. One common pathway is from a species-rich plant community with charophytes to a species-poor community dominated by P. pusillus, P. pectinatus and Z. palustris. Such compositional changes may often be accompanied by a substantial reduction in the seasonal duration of plant dominance and a greater tendency for incursions by phytoplankton. We hypothesise a slow-enacting (10,100 s years) feedback loop in nutrient-enriched shallow lakes whereby increases in algal abundance are associated with losses of macrophyte species and hence different plant seasonal strategies. In turn such changes may favour increased phytoplankton production thus placing further pressure on remaining macrophytes. This study blurs the distinction between so-called turbid phytoplankton-dominated and clear plant-dominated shallow lakes and suggests that plant loss from them may be a gradual process. [source]


    Seasonal trophic dynamics affect zooplankton community variability

    FRESHWATER BIOLOGY, Issue 11 2009
    BEATRIX E. BEISNER
    Summary 1. The degree to which communities are variable may be affected by the ecological conditions to which they are exposed and can affect their propensity to form alternative states. We examined the influence of two common ecological factors, predation and seasonal successional stage, on the variability in community composition of herbivorous pond plankton. In a highly replicated, two factor, mesocosm experiment we determined whether beta diversity was affected by seasonal successional stage of the community (two levels), by fish predation (presence/absence) or by their interaction. 2. Several significant changes were found in the composition of the rotifer, cladoceran and copepod assemblages. Most cladoceran abundances showed sharp declines in the presence of fish, while some rotifers, as well as their assemblage species richness, responded favourably to fish. The copepod assemblage was composed of omnivorous and carnivorous species, which added invertebrate predation to the experiment and which intensified as the season progressed. Copepods showed responses to fish predation that depended on seasonal successional stage of the initial community, because of changes in their stage structure and edibility as they grew from nauplii to adults. 3. Community variability was consistently high at the end of each month-long experimental period for both cladoceran and rotifer assemblages, except under two conditions. In the early season treatments, the rotifer assemblages were more consistent (lower beta diversity) in the presence of fish. This was attributed to high population growth rates for rotifers under these ecological conditions because of reduced copepod predation on them through a trophic cascade from fish. Low community variability was also observed in the late season for rotifers when fish were excluded and, as a result, they were exposed to high invertebrate predation from cyclopoid copepods. 4. Results from the early season support theoretical predictions that when community size increases, variability in composition should decline because of an increase in competitive processes over stochastic ones. Late season results suggest that a second mechanism, specialist predation, can also reduce prey community variability. Our study demonstrates that plankton communities may be more predictable under certain trophic web configurations and challenges ecologists to find ways to incorporate such inherent variability into experiments and community theory. [source]


    The role of light for fish,zooplankton,phytoplankton interactions during winter in shallow lakes , a climate change perspective

    FRESHWATER BIOLOGY, Issue 5 2009
    METTE ELISABETH BRAMM
    Summary 1.,Variations in the light regime can affect the availability and quality of food for zooplankton grazers as well as their exposure to fish predation. In northern lakes light is particularly low in winter and, with increasing warming, the northern limit of some present-day plankton communities may move further north and the plankton will thus receive less winter light. 2.,We followed the changes in the biomass and community structure of zooplankton and phytoplankton in a clear and a turbid shallow lake during winter (November,March) in enclosures both with and without fish and with four different light treatments (100%, 55%, 7% and <1% of incoming light). 3.,In both lakes total zooplankton biomass and chlorophyll- a were influenced by light availability and the presence of fish. Presence of fish irrespective of the light level led to low crustacean biomass, high rotifer biomass and changes in the life history of copepods. The strength of the fish effect on zooplankton biomass diminished with declining light and the effect of light was strongest in the presence of fish. 4.,When fish were present, reduced light led to a shift from rotifers to calanoid copepods in the clear lake and from rotifers to cyclopoid copepods in the turbid lake. Light affected the phytoplankton biomass and, to a lesser extent, the phytoplankton community composition and size. However, the fish effect on phytoplankton was overall weak. 5.,Our results from typical Danish shallow eutrophic lakes suggest that major changes in winter light conditions are needed in order to have a significant effect on the plankton community. The change in light occurring when such plankton communities move northwards in response to global warming will mostly be of modest importance for this lake type, at least for the rest of this century in an IPCC A2 scenario, while stronger effects may be observed in deep lakes. [source]


    Long-term responses of zooplankton to invasion by a planktivorous fish in a subarctic watercourse

    FRESHWATER BIOLOGY, Issue 1 2009
    PER-ARNE AMUNDSEN
    Summary 1.,Introduced or invading predators may have strong impacts on prey populations of the recipient community mediated by direct and indirect interactions. The long-term progression of predation effects, covering the invasion and establishment phase of alien predators, however, has rarely been documented. 2.,This paper documents the impact of an invasive, specialized planktivorous fish on its prey in a subarctic watercourse. Potential predation effects on the crustacean plankton, at the community, population and individual levels, were explored in a long-term study following the invasion by vendace (Coregonus albula). 3.,Over the 12-year period, the density and species richness of zooplankton decreased, smaller species became more abundant and Daphnia longispina, one of the largest cladocerans, was eliminated from the zooplankton community. 4.,Within the dominant cladocerans, including Daphnia spp., Bosmina longispina and Bosmina longirostris, the body size of ovigerous females and the size at first reproduction decreased after the arrival of the new predator. The clutch sizes of Daphnia spp. and B. longirostris also increased. 5.,Increased predation pressure following the vendace invasion induced many effects on the crustacean zooplankton, and we document comprehensive and strong direct and indirect long-term impacts of an introduced non-native predator on the native prey community. [source]


    Stoichiometric relationships in vernal pond plankton communities

    FRESHWATER BIOLOGY, Issue 7 2008
    CARLA E. CÁCERES
    Summary 1. The light-nutrient hypothesis (LNH) predicts that changes in light supply can alter the balance of nutrient and energy limitation in primary producers. We tested this prediction by examining temporal changes in vernal forest ponds, which are highly dynamic systems with respect to seasonal change in light and nutrient supply. In three vernal ponds that differ in productivity, we measured changes in light, total and seston nitrogen and phosphorus, and seston carbon and chlorophyll during the spring, before and after tree leaf-out. We also quantified changes in the population dynamics of the major zooplankton grazers in these systems. 2. In each pond, nutrient levels increased and light levels declined, creating a temporal shift in light-nutrient supply to the plankton. Results generally supported predictions of stoichiometric theory and the LNH, but there were notable exceptions. 3. Seston C : N : P ratios rapidly changed in response to dramatic increases in N and P supply rates. However, seston N : P was typically lower than values for total N : P in the water. Furthermore, as predicted, we observed a decline in seston C : P as the light : nutrient ratio declined, but seston C : N simultaneously increased. These results suggest an unexpected shift towards potential nitrogen limitation. Alternatively, this change in nutrient ratios may be driven by a seasonal change in phytoplankton composition or nutritional mode. 4. Seston carbon concentrations remained stable despite seasonal changes in grazing intensity associated with the phenology of large-bodied Daphnia grazers. However, chlorophyll concentrations declined dramatically as the season progressed, resulting in a simultaneous decline in the C : Chlorophyll ratio of seston. Both pond shading and increased grazing probably contributed to the decline in chlorophyll. [source]


    Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases

    FRESHWATER BIOLOGY, Issue 3 2007
    BRUNO B. CASTRO
    Summary 1. The fish fauna of many shallow Mediterranean Lakes is dominated by small-bodied exotic omnivores, with potential implications for fish,zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open-water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti-predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte-avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size-selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti-predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes. [source]


    Modelling the impact of benthic filter-feeders on the composition and biomass of river plankton

    FRESHWATER BIOLOGY, Issue 3 2003
    J.-P. Descy
    SUMMARY 1. The POTAMON model [Everbecq E. et al. (2001) Water Research, 35, 901] has been used to simulate the effect of benthic bivalves (mainly Dreissena polymorpha) on the phytoplankton and zooplankton in a lowland Western European river (the Moselle). Here we use a modified version of the POTAMON model with five categories of phytoplankton (Stephanodiscus, Cyclotella -like, large diatoms, Skeletonema and non-siliceous algae) to model filter-feeding effects of benthic bivalves in the Moselle. Zooplankton has been represented in the model by two categories, Brachionus -like and Keratella -like rotifers. 2. According to density estimates from field surveys (Bachmann V. et al. (1995) Hydroécologie Appliquée, 7, 185, Bachmann V. & Usseglio-Polatera P. (1999) Hydrobiologia, 410, 39), zebra mussel density varied among river stretches, and increased through the year to a maximum in summer. Dreissena filtration rates from the literature were used, and mussels have been assumed to feed on different phytoplankton categories (but less on large and filamentous diatoms) as well as on rotifers. 3. The simulations suggest a significant impact of benthic filter-feeders on potamoplankton and water quality in those stretches where the mussels are abundant, their impact being maximal in summer. Consequently, different plankton groups were not affected to the same extent, depending on their period of development and on indirect effects, such as predation by mussels on herbivorous zooplankton. 4. A daily carbon balance for a typical summer shows the effect of benthic filter-feeders on planktonic and benthic processes: the flux of organic matter to the bottom is greatly enhanced at high mussel density; conversely, production and breakdown of organic carbon in the water column are reduced. Mussel removal would drive the carbon balance of the river toward autotrophy only in the downstream stretches. [source]


    Changes in abundance, composition and controls within the plankton of a fertilised arctic lake

    FRESHWATER BIOLOGY, Issue 2 2002
    Neil D. Bettez
    1. An oligotrophic arctic lake was fertilised with inorganic nitrogen and phosphorus as (NH4)2 NO3 and H3PO4 for five summers. The loading rate was 1.7,2.5 mmol N m,2 day,1 and 0.136,0.20 mmol P m,2 day,1 which is two to three times the annual loading of lakes in the area. The heterotrophic microzooplankton community was enumerated during the experiment as well as 1 year pre- and post-treatment. 2. The structure of the microplankton community changed from a nutrient limited system, dominated by oligotrich protozoans and small-particle feeding rotifers, to a system dominated by a succession of peritrich protozoans and predatory rotifers. These peritrich protozoans and predatory rotifers were not present prior to fertilisation and never constituted more than a small fraction of the biomass in other lakes at the research site. The average biomass of the rotifers and protozoans was more than seven and a half times larger by the end of fertilisation than it was initially. 3. Because of the increases in numbers of individuals in these new taxa, the structure of the microbial food web changed. When fertilisation stopped, most parameters returned to prefertilisation levels within 1 year. [source]


    Power law relationships among hierarchical taxonomic categories in algae reveal a new paradox of the plankton

    GLOBAL ECOLOGY, Issue 5 2006
    Sophia I. Passy
    ABSTRACT Aim, In this continental-scale study, the biodiversity of benthic and planktonic algal communities was explored. A recent analysis of extinct and extant tree communities by Enquist et al. (2002) showed that richness of higher taxa was a power function of species richness, invariant across temporal and spatial scales. Here we examined whether the relationships between algal richness at hierarchical taxonomic levels conform to power laws as seen for trees, and if these relationships differ between benthic and planktonic habitats. Location, Streams from more than 50 major watersheds in the United States. Method, A total of 3698 samples were collected from 1277 locations by the National Water-Quality Assessment Program. Three types of stream habitat were sampled: richest targeted habitats, depositional targeted habitats, and phytoplankton. The relationships between taxonomic richness at the species level vs. all higher categories from genus to phylum across the three habitats were examined by ordinary least squares (OLS) regressions after ln-transformation of all variables. The slopes, b, of these regressions represent the exponents of the power functions that scaled the richness of higher taxonomic levels (T) to species richness (S) in the form: T,Sb. Results, Algal richness at hierarchical taxonomic categories (genus to phylum) is a power function of species richness. The scaling exponent of this function, which captures the diversification of higher taxa, i.e. the rate of increase of their richness with the increase of species richness, is significantly different across environments. Main conclusions, The differential algal diversification in the three studied habitats emphasizes the fundamental role of the environment in structuring the communities of simple organisms such as algae. The finding that the diversification of higher taxa is greater in the seemingly homogeneous planktonic environment, when compared to benthic habitats, encompassing an array of ecological niches, poses a new paradox of the plankton. [source]


    Potential sources of food hazards in emerging commercial aquaculture industry in sub-Saharan Africa: a case study for Uganda

    INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 9 2009
    Ananias Bagumire
    Summary A study was conducted to assess sources of food hazards in Uganda's emerging commercial aquaculture industry based on Hazard Analysis Critical Control Point (HACCP), focusing on inputs, their sources and farm-practices on ten representative commercial farms. Critical control points (CCPs) were identified to reveal potential hazards that would jeopardise any export trade. Site selection, water quality, fertiliser, fish seed, fish rearing facilities, feeds, and post-harvest practices were the main CCPs identified. Animal manure was used to generate plankton as pond fertiliser in nine of the ten surveyed farms and veterinary drugs were not found in any of the ten farms, which is starkly different from aquaculture in indutrialised countries. Potential sources of hazards from water were mainly: municipal waste flow which was more likely on five of the ten farms, domestic waste (four farms), agricultural run-off (three farms), and low water pH (three farms). Fish fry and fingerlings from other farms, feeds formulated on-farm from unapproved sources, chemical products, uncontrolled fish predators, and domestic animal and human activities were the other potential sources of hazards. A complete application of HACCP is recommended for producing safe products that meet the strict market standards of developed countries. [source]


    Phytoplankton and Epipelon Responses to Clear and Turbid Phases in a Seepage Lake (Buenos Aires, Argentina)

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 2 2009
    María Adela Casco
    Abstract Annual changes in the algal density and concentrations of chlorophyll a, total phosphorus, and organic matter were analyzed in water and sediments at four sites characterized by the presence or absence of submerged and emergent macrophytes, during turbid- and clear-water conditions to determine the contribution of the algal components of the plankton and the epipelon and to identify the most typical species in each community. Three states were recognized: one turbid and two clear, with different submerged macrophyte cover. The peaks of phytoplankton and epipelon occurred in the turbid phase, whereas the highest proportion of true epipelic algae in sediments was reached in the second clear phase. The Oscillatoriaceae dominated during the turbid phase in the water and throughout the entire year within the sediments. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Response of Nutrients, Plankton Communities and Macrophytes to Fish Manipulation in a Small Eutrophic Wetland Lake

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 5-6 2005
    István Tátrai
    Abstract A food web manipulation experiment was started in 1999 in a small shallow eutrophic (Major Lake as a part of the wetland area, the Kis-Balaton Water Protection System, KBWPS). The development of submerged macrophytes, the structure and biomass of phytoplankton and crustacean plankton responded rapidly to the removal of 60% of omnivorous cyprinid fish. An increase in transparency and a decrease in the concentrations of chlorophyll- a, phytoplankton and phosphorus occurred simultaneously with the increased presence of submerged macrophytes, which covered 45% of the lake area compared with <10% during the premanipulation period. The success of fish manipulation demonstrated the potential of this measure as a short-term management strategy. Our data also indicated that the clear water state was not stable in the long term. As long as phosphorus level is high, there is a risk that macrophytes will not successfully establish for longer period. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Cascading top-down effects of changing oceanic predator abundances

    JOURNAL OF ANIMAL ECOLOGY, Issue 4 2009
    Julia K. Baum
    Summary 1Top-down control can be an important determinant of ecosystem structure and function, but in oceanic ecosystems, where cascading effects of predator depletions, recoveries, and invasions could be significant, such effects had rarely been demonstrated until recently. 2Here we synthesize the evidence for oceanic top-down control that has emerged over the last decade, focusing on large, high trophic-level predators inhabiting continental shelves, seas, and the open ocean. 3In these ecosystems, where controlled manipulations are largely infeasible, ,pseudo-experimental' analyses of predator,prey interactions that treat independent predator populations as ,replicates', and temporal or spatial contrasts in predator populations and climate as ,treatments', are increasingly employed to help disentangle predator effects from environmental variation and noise. 4Substantial reductions in marine mammals, sharks, and piscivorous fishes have led to mesopredator and invertebrate predator increases. Conversely, abundant oceanic predators have suppressed prey abundances. Predation has also inhibited recovery of depleted species, sometimes through predator,prey role reversals. Trophic cascades have been initiated by oceanic predators linking to neritic food webs, but seem inconsistent in the pelagic realm with effects often attenuating at plankton. 5Top-down control is not uniformly strong in the ocean, and appears contingent on the intensity and nature of perturbations to predator abundances. Predator diversity may dampen cascading effects except where nonselective fisheries deplete entire predator functional groups. In other cases, simultaneous exploitation of predator and prey can inhibit prey responses. Explicit consideration of anthropogenic modifications to oceanic foodwebs should help inform predictions about trophic control. 6Synthesis and applications. Oceanic top-down control can have important socio-economic, conservation, and management implications as mesopredators and invertebrates assume dominance, and recovery of overexploited predators is impaired. Continued research aimed at integrating across trophic levels is needed to understand and forecast the ecosystem effects of changing oceanic predator abundances, the relative strength of top-down and bottom-up control, and interactions with intensifying anthropogenic stressors such as climate change. [source]


    Density-dependent mortality is mediated by foraging activity for prey fish in whole-lake experiments

    JOURNAL OF ANIMAL ECOLOGY, Issue 4 2003
    Peter A. Biro
    Summary 1Whereas the effects of density-dependent growth and survival on population dynamics are well-known, mechanisms that give rise to density dependence in animal populations are not well understood. We tested the hypothesis that the trade-off between growth and mortality rates is mediated by foraging activity and habitat use. Thus, if depletion of food by prey is density-dependent, and leads to greater foraging activity and risky habitat use, then visibility and encounter rates with predators must also increase. 2We tested this hypothesis by experimentally manipulating the density of young rainbow trout (Oncorhynchus mykiss) at risk of cannibalism, in a replicated single-factor experiment using eight small lakes, during an entire growing season. 3We found no evidence for density-dependent depletion of daphnid food in the nearshore refuge where most age-0 trout resided. Nonetheless, the proportion of time spent moving by individual age-0 trout, the proportion of individuals continuously active, and use of deeper habitats was greater in high density populations than in low density populations. Differences in food abundance among lakes had no effect on measures of activity or habitat use. 4Mortality of age-0 trout over the growing season was higher in high density populations, and in lakes with lower daphnid food abundance. Therefore, population-level mortality of age-0 trout is linked to greater activity and use of risky habitats by individuals at high densities. We suspect that food resources were depleted at small spatial and temporal scales not detected by our plankton sampling in the high density treatment, because food-dependent activity and habitat use by age-0 trout occurs in our lakes when food abundance is experimentally manipulated (Biro, Post & Parkinson, in press). [source]


    Selection of low investment in sex in a cyclically parthenogenetic rotifer

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 10 2009
    M. J. CARMONA
    Abstract Cyclical parthenogens, which combine asexual and sexual reproduction, are good models for research into the ecological and population processes affecting the evolutionary maintenance of sex. Sex in cyclically parthenogenetic rotifers is necessary for diapausing egg production, which is essential to survive adverse conditions between planktonic growing seasons. However, within a planktonic season sexual reproduction prevents clonal proliferation. Hence, clones with a low propensity for sex should be selected, becoming dominant in the population as the growing season progresses. In this context, we studied the dynamics of the heritable variation in propensity for sexual reproduction among clones of a Brachionus plicatilis rotifer population in a temporary Mediterranean pond during the period the species occurred in plankton. Clonal isolates displayed high heritable variation in their propensity for sex. Moreover, the frequency of clones with low propensity for sex increased during the growing season, which supports the hypothesized short-term selection for low investment in sex within a growing season. These results demonstrate (1) the inherent instability of the cyclical parthenogenetic life cycle, (2) the cost of sexual reproduction in cyclical parthenogens where sex produces diapausing eggs and (3) the role of the association between sexual reproduction and diapause in maintaining sex in these cyclical parthenogens. [source]


    Development of feeding structures in larval fish with different life histories: winter flounder and Atlantic cod

    JOURNAL OF FISH BIOLOGY, Issue 4 2001
    I. Hunt von Herbing
    The size at which feeding structures developed and shifts in head proportions occurred, differed between Atlantic cod Gadus morhua and winter flounder Pseudopleuronectes americanus. The sequence and timing of the development of feeding structures may not be dependent on size, but may occur because they are necessary to meet specific requirements offish larvae feeding in the plankton. In early larval stages development of feeding structures was similar in number and type and was necessary for first-feeding in both species. In later stages, significant differences between species occurred in the timing of the development of feeding structures. In cod differentiation of new structures and changes in head proportions occurred at about two-thirds of the way through larval life, which coincided with an increase in growth. In flounder changes in feeding morphology did not occur during the symmetrical larval stage, but occurred only after metamorphosis to the asymmetrical demersal juvenile stage. Differences between cod and flounder in the size at which feeding structures develop may reflect life history adaptations expressed in the duration of the pelagic larval stage, as well as differences in juvenile habitat and feeding ecology. [source]


    Relating the ontogeny of functional morphology and prey selection with larval mortality in Amphiprion frenatus

    JOURNAL OF MORPHOLOGY, Issue 6 2010
    Justin Anto
    Abstract Survival during the pelagic larval phase of marine fish is highly variable and is subject to numerous factors. A sharp decline in the number of surviving larvae usually occurs during the transition from endogenous to exogenous feeding known as the first feeding stage in fish larvae. The present study was designed to evaluate the link between functional morphology and prey selection in an attempt to understand how the relationship influences mortality of a marine fish larva, Amphiprion frenatus, through ontogeny. Larvae were reared from hatch to 14 days post hatch (DPH) with one of four diets [rotifers and newly hatched Artemia sp. nauplii (RA); rotifers and wild plankton (RP); rotifers, wild plankton, and newly hatched Artemia nauplii (RPA); wild plankton and newly hatched Artemia nauplii (PA)]. Survival did not differ among diets. Larvae from all diets experienced mass mortality from 1 to 5 DPH followed by decreased mortality from 6 to 14 DPH; individuals fed RA were the exception, exhibiting continuous mortality from 6 to 14 DPH. Larvae consumed progressively larger prey with growth and age, likely due to age related increase in gape. During the mass mortality event, larvae selected small prey items and exhibited few ossified elements. Cessation of mass mortality coincided with consumption of large prey and ossification of key elements of the feeding apparatus. Mass mortality did not appear to be solely influenced by inability to establish first feeding. We hypothesize the interaction of reduced feeding capacities (i.e., complexity of the feeding apparatus) and larval physiology such as digestion or absorption efficiency contributed to the mortality event during the first feeding period. J. Morphol., 2010. © 2010 Wiley-Liss, Inc. [source]