Planetary Nebulae (planetary + nebula)

Distribution by Scientific Domains


Selected Abstracts


Distant future of the Sun and Earth revisited

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
K.-P. Schröder
ABSTRACT We revisit the distant future of the Sun and the Solar system, based on stellar models computed with a thoroughly tested evolution code. For the solar giant stages, mass loss by the cool (but not dust-driven) wind is considered in detail. Using the new and well-calibrated mass-loss formula of Schröder & Cuntz, we find that the mass lost by the Sun as a red giant branch (RGB) giant (0.332 M,, 7.59 Gyr from now) potentially gives planet Earth a significant orbital expansion, inversely proportional to the remaining solar mass. According to these solar evolution models, the closest encounter of planet Earth with the solar cool giant photosphere will occur during the tip-RGB phase. During this critical episode, for each time-step of the evolution model, we consider the loss of orbital angular momentum suffered by planet Earth from tidal interaction with the giant Sun, as well as dynamical drag in the lower chromosphere. As a result of this, we find that planet Earth will not be able to escape engulfment, despite the positive effect of solar mass loss. In order to survive the solar tip-RGB phase, any hypothetical planet would require a present-day minimum orbital radius of about 1.15 au. The latter result may help to estimate the chances of finding planets around white dwarfs. Furthermore, our solar evolution models with detailed mass-loss description predict that the resulting tip-AGB (asymptotic giant branch) giant will not reach its tip-RGB size. Compared to other solar evolution models, the main reason is the more significant amount of mass lost already in the RGB phase of the Sun. Hence, the tip-AGB luminosity will come short of driving a final, dust-driven superwind, and there will be no regular solar planetary nebula (PN). The tip-AGB is marked by a last thermal pulse, and the final mass loss of the giant may produce a circumstellar (CS) shell similar to, but rather smaller than, that of the peculiar PN IC 2149 with an estimated total CS shell mass of just a few hundredths of a solar mass. [source]


Mass loss and yield uncertainty in low-mass asymptotic giant branch stars

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
Richard J. Stancliffe
ABSTRACT We investigate the uncertainty in surface abundances and yields of asymptotic giant branch (AGB) stars. We apply three different mass-loss laws to a 1.5-M, star of metallicity Z= 0.008 at the beginning of the thermally pulsing-asymptotic giant branch (TP-AGB) phase. Efficient third dredge-up is found even at very low envelope mass, contrary to previous simulations with other evolution codes. We find that the yield of carbon is uncertain by about 15 per cent and for most other light elements the yield is uncertain at the level of 20,80 per cent. For iron group elements, the uncertainty varies from around 30 per cent for the more-abundant species to over a factor of 2 for the less-abundant radioactive species, like 60Fe. The post-AGB surface abundances for this mass and metallicity are much more uncertain due to the dilution of dredged-up material in differing envelope masses in the later stages of the models. Our results are compared to known planetary nebula and post-AGB abundances. We find that the models are mostly consistent with observations but we are unable to reproduce observations of some of the isotopes. [source]


Near-infrared polarimetry and modelling of the dusty young planetary nebula IRAS 19306+1407

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2007
K. T. E. Lowe
ABSTRACT We present near-infrared polarimetric images of the dusty circumstellar envelope (CSE) of IRAS 19306+1407, acquired at the United Kingdom Infrared Telescope (UKIRT) using the UKIRT 1,5 ,m Imager Spectrometer (UIST) in conjunction with the half-waveplate module IRPOL2. We present additional 450- and 850-,m photometry data obtained with the Submillimetre Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), as well as archived Hubble Space Telescope (HST) F606W - and F814W -filter images. The CSE structure in polarized flux at J and K bands shows an elongation north of north-east and south of south-west with two bright scattering shoulders north-west and south-east. These features are not perpendicular to each other and could signify a recent ,twist' in the outflow axis. We model the CSE using an axisymmetric light scattering (als) code to investigate the polarization produced by the CSE, and an axisymmetric radiation transport (dart) code to fit the spectral energy distribution. A good fit was achieved with the als and dart models using silicate grains, 0.1,0.4 ,m with a power-law size distribution of a,3.5, and an axisymmetric shell geometry with an equator-to-pole ratio of 7:1. The spectral type of the central star is determined to be B1i supporting previous suggestions that the object is an early planetary nebula. We have constrained the CSE and interstellar extinction as 2.0 and 4.2 mag, respectively, and have estimated a distance of 2.7 kpc. At this distance, the stellar luminosity is ,4500 L, and the mass of the CSE is ,0.2 M,. We also determine that the mass loss lasted for ,5300 yr with a mass-loss rate of ,3.4 × 10,5 M, yr,1. [source]


Spectral index of the H2O-maser-emitting planetary nebula IRAS 17347 , 3139

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
J. F. Gómez
ABSTRACT We present radio-continuum observations of the planetary nebula (PN) IRAS 17347 , 3139 (one of the only two known to harbour water maser emission), made to derive its spectral index and the turnover frequency of the emission. The spectrum of the source rises in the whole frequency range sampled, from 2.4 to 24.9 GHz, although the spectral index seems to decrease at the highest frequencies (0.79 ± 0.04 between 4.3 and 8.9 GHz, and 0.64 ± 0.06 between 16.1 and 24.9 GHz). This suggests a turnover frequency of around 20 GHz (which is unusual among PNe, whose radio emission usually becomes optically thin at frequencies <10 GHz), and a relatively high emission measure (1.5 × 109 cm,6 pc). The radio-continuum emission has increased by a factor of ,1.26 at 8.4 GHz in 13 yr, which can be explained as expansion of the ionized region by a factor of ,1.12 in radius with a dynamical age of ,120 yr and at an expansion velocity of ,5,40 km s ,1. These radio-continuum characteristics, together with the presence of water maser emission and a strong optical extinction, suggest that IRAS 17347 , 3139 is one of the youngest PNe known, with a relatively massive progenitor star. [source]


The haloes of planetary nebulae in the mid-infrared: evidence for interaction with the interstellar medium

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
G. Ramos-Larios
ABSTRACT The motion of planetary nebulae through the interstellar medium (ISM) is thought to lead to a variety of observational consequences, including the formation of bright rims, deformation and fragmentation of the shells, and a shift of the central stars away from the geometric centres of the envelopes. These and other characteristics have been noted through imaging in the visual wavelength regime. We report further observations of such shells taken in the mid-infrared (MIR), acquired through programmes of Infrared Array Camera imaging undertaken using the SpitzerSpace Telescope. NGC 2440 and NGC 6629 are shown to possess likely interacting haloes, together with ram-pressure-stripped material to one side of their shells. Similarly, the outer haloes of NGC 3242 and NGC 6772 appear to have been fragmented through Rayleigh,Taylor (RT) instabilities, leading to a possible flow of ISM material towards the inner portions of their envelopes. If this interpretation is correct, then it would suggest that NGC 3242 is moving towards the NE, a suggestion which is also supported through the presence of a 60 ,m tail extending in the opposite direction, and curved bands of H, emission in the direction of motion , components which may arise through RT instabilities in the magnetized ISM. NGC 2438 possesses strong scalloping at the outer limits of its asymptotic giant branch (AGB) halo, probably reflecting RT instabilities at the nebular/ISM interface We also note that the interior structure of the source has been interpreted in terms of a recombining shell, a hypothesis which may not be consistent with the central star luminosities. Finally, we point out that two of the rims (and likely shock interfaces) appear to have a distinct signature in the MIR, whereby relative levels of 8.0 ,m emission are reduced. This may imply that the grain emission agents are depleted in the post-shock AGB regimes. [source]


Density gradients in Galactic planetary nebulae

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2007
J. P. Phillips
ABSTRACT Certain hydrodynamic models of planetary nebulae (PNe) suggest that their shells possess appreciable radial density gradients. However, the observational evidence for such gradients is far from clear. On the one hand, Taylor et al. claim to find evidence for radio spectral indices 0.6 < , < 1.8, a trend which is taken to imply a variation ne,r,2 in most of their sample of PNe. On the other hand, Siódmiak & Tylenda find no evidence for any such variations in density; shell inhomogeneities, where they occur, are primarily attributable to ,blobs or condensations'. It will be suggested that both of these analyses are unreliable, and should be treated with a considerable degree of caution. A new analysis within the log(F(5 GHz)/F(1.4 GHz)),log(TB(5 GHz)) plane will be used to show that at least 10,20 per cent of PNe are associated with strong density gradients. We shall also show that the ratio F(5 GHz)/F(1.4 GHz) varies with nebular radius; an evolution that can be interpreted in terms of varying shell masses, and declining electron densities. [source]


A Subaru/Suprime-Cam wide-field survey of globular cluster populations around M87 , II.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2006
Colour, spatial distribution
ABSTRACT We have performed a wide-field imaging survey of the globular cluster (GC) populations around M87 with Suprime-Cam on the 8.2-m Subaru Telescope. A field extending from the centre of M87 out to a radius of ,0.5 Mpc was observed through the BVI filters. By investigating the GC colour distribution as a function of distance from M87 and NGC 4552, another luminous Virgo elliptical in our survey field, it is found that clear bimodality [(V,I)peak, 1.0 and 1.2] is seen only in the inner regions (,10 kpc) of the host galaxies and that it becomes weaker with radius due to the decreasing contribution of the red GC (V,I > 1.1) subpopulation. It is also found (both around M87 and around NGC 4552) that while the spatial distribution of the red GCs is as centrally concentrated as the host galaxy halo light distribution, the distribution of the blue GCs (V,I, 1.1) tends to be more extended. However, the blue GC distribution around M87 is not as extended as the Virgo cluster mass density profile. Based on these facts, we argue that the contribution of GCs associated with the Virgo cluster [e.g. intergalactic GCs (i-GCs)] is not significant around M87 and is not the primary reason for the high SN value of M87. Instead, most of the blue GCs around luminous ellipticals, as well as the red GCs, are presumed to be associated with the host galaxy. We model the radial profile of GC surface densities out to ,0.5 Mpc from M87 by a superposition of the GC populations associated with M87 and with NGC 4552. It is found that there are some regions where the GC surface densities are larger than that which is expected from this model, suggesting the existence of an additional i-GC population independent of the luminous ellipticals. By comparing the estimated i-GC surface density with the luminosity density of the intracluster stellar population inferred from the intergalactic planetary nebulae in the Virgo cluster, we obtain a crude estimate of i-GC specific frequency SN= 2.9+4.2,1.5. If this SN value represents the stellar population tidally stripped by a massive central galaxy from other (less-luminous) galaxies, the contribution of tidally captured GCs in the GC population of M87 would need to be low to be consistent with the high SN value of M87. [source]


Stellar haloes and elliptical galaxy formation: origin of dynamical properties of the planetary nebula systems

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
Kenji Bekki
ABSTRACT Recent spectroscopic observations of planetary nebulae (PNe) in several elliptical galaxies have revealed structural and kinematical properties of the outer stellar halo regions. In order to elucidate the origin of the properties of these planetary nebula systems (PNSs), we consider the merger scenario in which an elliptical galaxy is formed by merging of spiral galaxies. Using numerical simulations, we particularly investigate radial profiles of projected PN number densities, rotational velocities and velocity dispersions of PNSs extending to the outer halo regions of elliptical galaxies formed from major and unequal-mass merging. We find that the radial profiles of the project number densities can be fitted to the power law and the mean number density in the outer haloes of the ellipticals can be more than an order of magnitude higher than that of the original spiral's halo. The PNSs are found to show a significant amount of rotation (V/, > 0.5) in the outer halo regions (R > 5Re) of the ellipticals. Two-dimensional velocity fields of PNSs are derived from the simulations and their dependences on model parameters of galaxy merging are discussed in detail. We compare the simulated kinematics of PNSs with that of the PNS observed in NGC 5128 and thereby discuss advantages and disadvantages of the merger model in explaining the observed kinematics of the PNS. We also find that the kinematics of PNSs in elliptical galaxies are quite diverse depending on the orbital configurations of galaxy merging, the mass ratio of merger progenitor spirals and the viewing angle of the galaxies. This variation translates directly into possible biases by a factor of 2 in observational mass estimation. However, the biases in the total mass estimates can be even larger. The best case systems viewed edge-on can appear to have masses lower than their true mass by a factor of 5, which suggests that current observational studies on PN kinematics of elliptical galaxies can significantly underestimate their real masses. [source]


Magnetic jets from swirling discs

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
D. Lynden-Bell
ABSTRACT A broad swathe of astrophysical phenomena, ranging from tubular planetary nebulae through Herbig,Haro objects, radio galaxy and quasar emissions to gamma-ray bursts and perhaps high-energy cosmic rays, may be driven by magnetically dominated jets emanating from accretion discs. We give a self-contained account of the analytic theory of non-relativistic magnetically dominated jets wound up by a swirling disc and making a magnetic cavity in a background medium of any prescribed pressure, p(z). We solve the time-dependent problem for any specified distribution of magnetic flux P(R, 0) emerging from the disc at z= 0, with any specified disc angular velocity ,d(R). The physics required to do this involves only the freezing of the lines of force to the conducting medium and the principle of minimum energy. In a constant pressure environment, the magnetically dominated cavity is highly collimated and advances along the axis at a constant speed closely related to the maximum circular velocity of the accretion disc. Even within the cavity the field is strongly concentrated towards the axis. The twist in the jet field ,B,,/,|Bz|, is close to and the width of the jet decreases upwards. By contrast, when the background pressure falls off with height with powers approaching z,4, the head of the jet accelerates strongly and the twist of the jet is much smaller. The width increases to give an almost conical magnetic cavity with apex at the source. Such a regime may be responsible for some of the longest strongly collimated jets. When the background pressure falls off faster than z,4, there are no quasi-static configurations of well-twisted fields and the pressure confinement is replaced by a dynamic effective pressure or a relativistic expansion. In the regimes with rapid acceleration, the outgoing and incoming fields linking the twist back to the source are almost anti-parallel so there is a possibility that magnetic reconnections may break up the jet into a series of magnetic ,smoke-rings' travelling out along the axis. [source]


A deep kinematic survey of planetary nebulae in the Andromeda galaxy using the Planetary Nebula Spectrograph

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
H. R. Merrett
ABSTRACT We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers the whole of M31's disc out to a radius of . Beyond this radius, observations have been made along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m5007, 23.75, 3.5 mag into the PN luminosity function. We have identified emission-line objects associated with M31's satellites and other background galaxies. We have examined the data from the region tentatively identified as a new satellite galaxy, Andromeda VIII, comparing it to data in the other quadrants of the galaxy. We find that the PNe in this region have velocities that appear to be consistent with membership of M31 itself. The luminosity function of the surveyed PNe is well matched to the usual smooth monotonic function. The only significant spatial variation in the luminosity function occurs in the vicinity of M31's molecular ring, where the luminosities of PNe on the near side of the galaxy are systematically ,0.2 mag fainter than those on the far side. This difference can be explained naturally by a modest amount of obscuration by the ring. The absence of any difference in luminosity function between bulge and disc suggests that the sample of PNe is not strongly populated by objects whose progenitors are more massive stars. This conclusion is reinforced by the excellent agreement between the number counts of PNe and the R -band light. The number counts of kinematically selected PNe also allow us to probe the stellar distribution in M31 down to very faint limits. There is no indication of a cut-off in M31's disc out to beyond four scalelengths, and no signs of a spheroidal halo population in excess of the bulge out to 10 effective bulge radii. We have also carried out a preliminary analysis of the kinematics of the surveyed PNe. The mean streaming velocity of the M31 disc PNe is found to show a significant asymmetric drift out to large radii. Their velocity dispersion, although initially declining with radius, flattens out to a constant value in the outer parts of the galaxy. There are no indications that the disc velocity dispersion varies with PN luminosity, once again implying that the progenitors of PNe of all magnitudes form a relatively homogeneous old population. The dispersion profile and asymmetric drift results are shown to be mutually consistent, but require that the disc flares with radius if the shape of its velocity ellipsoid remains invariant. [source]


Further 2MASS mapping of hot dust in planetary nebulae

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
J. P. Phillips
ABSTRACT We have used 2 Micron All Sky Survey (2MASS) mapping results to investigate the distribution of hot dust continua in 12 planetary nebulae (PNe). The nature of this emission is unclear, but it is possible that where the continuum is extended, as is the case for M 1-12 and NGC 40, then the grains concerned may be very small indeed. The absorption of individual photons by such grains may lead to sharp spikes in temperature, as has previously discussed for several other such outflows. Other sources (such as MaC 1-4, He 2-25, B1 2-1 and K 3-15) appear to be relatively compact, and the high temperatures observed are understandable in terms of more normal heating processes. It is possible that the grains in these cases are experiencing high radiant flux levels. Finally, it is noted that whilst the core of M 2-2 appears to show hot grain emission, this is less the case for its more extended envelope. The situation may, in this case, be similar to that of NGC 2346, in which much of the emission is located within an unresolved nucleus. Similarly, it is noted that in addition to hot dust and gas thermal continua, the emission in the interior of NGC 40 may be enhanced through rotational,vibrational transitions of H2, and/or the 2p3P0,2s3S transition of He i. [source]


Mid-infrared spectroscopy of protoplanetary and planetary nebulae

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2002
S. A. Rinehart
Abstract We present medium-resolution (R, 600), mid-infrared (7.5,14 ,m) spectra of 15 young planetary nebulae. Linestrengths for observed forbidden transitions are presented, and numerous broad emission features from silicates, polyaromatic hydrocarbons (PAHs) and silicon carbide (SiC) are observed. [source]


Productivity and impact of astronomical facilities: A recent sample

ASTRONOMISCHE NACHRICHTEN, Issue 3 2010
V. Trimble
Abstract The papers published in 11 key astronomical journals in 2008, and a year of citations to those from the first half of the year, have been associated with the telescopes, satellites, and so forth where the data were gathered using a form of fractional counting. Some numbers are also given by journal, by subfield, and by wavelength band. The largest numbers of papers, and generally also quite highly cited ones, in their respective wavelength bands come from the Very Large Array, the Hubble Space Telescope, the Sloan Digital Sky Survey, the Spitzer Space Telescope, and the Chandra X-ray Telescope. Optical astronomy is still the largest sector; and papers about cosmology and exoplanets are cited more often than papers about binary stars and planetary nebulae. The authors conclude that it is of equal importance to recognize (a) that a very large number of papers also come from less famous facilities, (b) that a very large fraction of papers (and their authors) are concerned with the less highly-cited topics, (c) that many facilities are quite slow in achieving their eventual level of influence, and (d) that one really needs at least three years of citation data, not just one or two, to provide a fair picture of what is going on (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Supernova remnants, planetary nebulae and superbubbles: Prospects for new XMM-Newton observations

ASTRONOMISCHE NACHRICHTEN, Issue 2 2008
A. DecourchelleArticle first published online: 14 FEB 200
Abstract Important results achieved over the last years on supernova remnants, planetary nebulae and superbubbles are briefly reviewed in the context of X-ray observations. I intend to review the important open scientific questions in these fields, and the specific contributions that can be made by XMM-Newton. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


New H-alpha emission stars towards the galactic bulge

ASTRONOMISCHE NACHRICHTEN, Issue 5 2003
L. Kohoutek
Abstract This paper is dealing with the investigation of H-alpha emission stars towards the galactic bulge. In this important region 533 H-alpha emission stars have already been discovered. We add 98 new and 9 possible new (perhaps identical with known objects) H-alpha emission stars found in the objective-prism survey of planetary nebulae and we give the identification charts, the accurate coordinates as well as a rough description. The distribution in l, b of all objects shows the expected concentration towards the galactic equator with the maximum near l=0. and b=0. distorted probably due to strong interstellar extinction. [source]