Plastid Genes (plastid + gene)

Distribution by Scientific Domains


Selected Abstracts


Molecular evolution and phylogeny of the angiosperm ycf2 gene

JOURNAL OF SYSTEMATICS EVOLUTION, Issue 4 2010
Jin-Ling HUANG
Abstract, Much of the recent progress in understanding angiosperm phylogeny has been achieved using multigene or plastid genome datasets. However, it is largely unclear what size of dataset is required to achieve sufficient resolution. The ycf2 gene is the largest plastid gene in angiosperms and it was used as part of multigene datasets in several earlier investigations into angiosperm relationships. In this study, we show that the ycf2 gene alone can provide a generally well-supported phylogeny that is consistent with those inferred from the most comprehensive multigene or plastid genome datasets. The phylogenetic signal of the ycf2 gene is likely derived from the combination of its long sequence length and low rate of nucleotide substitution. The ycf2 gene may provide a low-cost alternative to comprehensive multigene or genome datasets for investigating angiosperm relationships. [source]


The Arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate- and jasmonate-mediated defence responses

PLANT CELL & ENVIRONMENT, Issue 5 2010
Y.-D. XIE
ABSTRACT The chloroplast-localized SIB1 protein was previously identified by its interaction with SIGMA FACTOR 1 (SIG1), a component of the RNA polymerase machinery responsible for transcription of plastid genes. The physiological function of SIB1 is little known. We found that expression of SIB1 is induced by infection with Pseudomonas syringae, suggesting its possible involvement in the defence response. The sib1 loss-of-function mutation compromises induction of some defence-related genes triggered by pathogen infection and the treatments with salicylic acid (SA) and jasmonic acid (JA), two key signalling molecules in the defence response. Conversely, constitutive over-expression of SIB1 causes the plants to hyper-activate defence-related genes following pathogen infection or the SA and JA treatments, leading to enhanced resistance to infection by P. syringae. SIB1 is a member of the large plant-specific VQ motif-containing protein family, and might act as a link to connect defence signalling with chloroplast function. [source]


Transcription of plastid genes is modulated by two nuclear-encoded , subunits of plastid RNA polymerase in the moss Physcomitrella patens

THE PLANT JOURNAL, Issue 4 2007
Yukihiro Kabeya
Summary In general, in higher plants, the core subunits of a bacterial-type plastid-encoded RNA polymerase (PEP) are encoded by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes. However, an rpoA gene is absent from the moss Physcomitrella patens plastid genome, although the PpRpoA gene (renamed PpRpoA1) nuclear counterpart is present in the nuclear genome. In this study, we identified and characterized a second gene encoding the plastid-targeting , subunit (PpRpoA2). PpRpoA2 comprised 525 amino acids and showed 59% amino acid identity with PpRpoA1. Two PpRpoA proteins were present in the PEP active fractions separated from the moss chloroplast lysate, confirming that both proteins are , subunits of PEP. Northern blot analysis showed that PpRpoA2 was highly expressed in the light, but not in the dark, whereas PpRpoA1 was constitutively expressed. Disruption of the PpRpoA1 gene resulted in an increase in the PpRpoA2 transcript level, but most plastid gene transcript levels were not significantly altered. This indicates that transcription of most plastid genes depends on PpRpoA2-PEP rather than on PpRpoA1-PEP. In contrast, the transcript levels of petN, psbZ and ycf3 were altered in the PpRpoA1 gene disruptant, suggesting that these are PpRpoA1-PEP-dependent genes. These observations suggest that plastid genes are differentially transcribed by distinct PEP enzymes with either PpRpoA1 or PpRpoA2. [source]


Phylogenetics and classification of the pantropical fern family Lindsaeaceae

BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
SAMULI LEHTONEN
The classification and generic definition in the tropical,subtropical fern family Lindsaeaceae have been uncertain and have so far been based on morphological characters only. We have now studied the evolutionary history of the Lindsaeaceae by simultaneously optimizing 55 morphological characters, two plastid genes (rpoC1 and rps4) and three non-coding plastid intergenic spacers (trnL-F, rps4-trnS and trnH-psbA). Our data set included all genera associated with Lindsaeaceae, except Xyropteris, and c. 73% of the currently accepted species. The phylogenetic relationships of the lindsaeoid ferns with two enigmatic genera that have recently been included in the Lindsaeaceae, Cystodium and Lonchitis, remain ambiguous. Within the monophyletic lindsaeoids, we found six well-supported and diagnostic clades that can be recognized as genera: Sphenomeris, Odontosoria, Osmolindsaea, Nesolindsaea, Tapeinidium and Lindsaea. Sphenomeris was shown to be monotypic; most taxa formerly placed in that genus belong to the Odontosoria clade. Ormoloma is embedded within Lindsaea and therefore does not merit recognition as a genus. Tapeinidium is sister to a clade with some species formerly placed in Lindsaea that are morphologically distinct from that genus and are transferred to Osmolindsaea and Nesolindsaea, proposed here as two new genera. We do not maintain the current subgeneric classification of Lindsaea itself, because neither of the two generally accepted subgenera (Lindsaea and Odontoloma) is monophyletic, and most of the sections also appear unnatural. Nesolindsaea shows an ancient biogeographical link between Sri Lanka and the Seychelles and many of the main clades within Lindsaea have geographically disjunct distributions. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163, 305,359. [source]