Plasticizer Content (plasticizer + content)

Distribution by Scientific Domains


Selected Abstracts


Whey protein isolate coating on LDPE film as a novel oxygen barrier in the composite structure

PACKAGING TECHNOLOGY AND SCIENCE, Issue 1 2004
Seok-In Hong
Abstract To examine the feasibility of whey protein isolate (WPI) coating as an alternative oxygen barrier for food packaging, heat-denatured aqueous solutions of WPI with various levels of glycerol as a plasticizer were applied on corona-discharge-treated low-density polyethylene (LDPE) films. The resulting WPI-coated LDPE films showed good appearance, flexibility and adhesion between the coating and the base film, when an appropriate amount of plasticizer was added to the coating formulations. WPI-coated LDPE films showed significant decrease in oxygen permeability (OP) at low to intermediate relative humidity, with an Arrhenius behaviour and an activation energy of 50.26,kJ/mol. The OP of the coated films increased significantly with increasing relative humidity, showing an exponential function. Although the coated films showed a tendency to have less oxygen barrier and more glossy surfaces with increasing plasticizer content, differences in the OP and gloss values were not significant. Haze index and colour of the coated films were also little influenced by WPI coating and plasticizer content. The results suggest that whey protein isolate coating could work successfully as an oxygen barrier and have potential for replacing synthetic plastic oxygen-barrier layers in many laminated food packaging structures. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Film extrusion of sunflower protein isolate

POLYMER ENGINEERING & SCIENCE, Issue 11 2006
Antoine Rouilly
Film extrusion of sunflower protein isolate (SFPI) was studied. The influence of die temperature (85,160°C), water and glycerol contents were investigated through appearance, mechanical and thermomechanical properties, and swelling behavior in water of films. It was demonstrated that highest temperature, well above SFPI denaturation temperature in the compound, highest glycerol content (70 parts for 100 parts of SFPI), and medium water content (20 parts for 100 parts of SFPI) gave the most regular and smoothest film (as seen on SEM micrographs). Its ultimate tensile strength, Young's modulus, and strain at break were, respectively, 3.2 MPa, 17.7 MPa, and 73%. Soaked in water, its swelling was about 186% w/w but the film was quiet insoluble. Effect of temperature and plasticizer content were discussed in relation to the kinetic of SFPI denaturation. These first results are very promising for the development of biodegradable protein-based films. POLYM. ENG. SCI. 46:1635,1640, 2006. © 2006 Society of Plastics Engineers. [source]


Development of renewable resource,based cellulose acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics

POLYMER ENGINEERING & SCIENCE, Issue 5 2003
A. K. Mohanty
This paper deals with the development of a cellulose acetate biopolymer. Plasticization of this biopolymer under varying processing conditions to make it a suitable matrix polymer for bio-composite applications was studied. In particular, cellulose acetate was plasticized with varying concentrations of an eco-friendly triethyl citrate (TEC) plasticizer, unlike a conventional, petroleum-derived phthalate plasticizer. Three types of processing were used to fabricate plasticized cellulose acetate parts: compression molding, extrusion followed by compression molding, and extrusion followed by injection molding. The processing mode affected the physicomechanical and thermal properties of the cellulosic plastic. Compression molded samples exhibited the highest impact strength, tending towards the impact strength of a thermoplastic olefin (TPO), while samples that were extruded and then injection molded exhibited the highest tensile strength and modulus values. Increasing the plasticizer content in the cellulosic plastic formulation improved the impact strength and strain to failure while decreasing the tensile strength and modulus values. The coefficient of thermal expansion (CTE) of the cellulose acetate increased with increasing amounts of plasticizer. Plasticized cellulose acetate was found to be processable at 170,180°C, approximately 50°C below the melting point of neat cellulose acetate. [source]


Crystallinity, thermal properties, morphology and conductivity of quaternary plasticized PEO-based polymer electrolytes

POLYMER INTERNATIONAL, Issue 3 2007
Yan-Jie Wang
Abstract Quaternary plasticized solid polymer electrolyte (SPE) films composed of poly(ethylene oxide), LiClO4, Li1.3Al0.3Ti1.7(PO4)3, and either ethylene carbonate or propylene carbonate as plasticizer (over a range of 10,40 wt%) were prepared by a solution-cast technique. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) indicated that components such as LiClO4 and Li1.3Al0.3Ti1.7(PO4)3 and the plasticizers exerted important effects on the plasticized quaternary SPE systems. XRD analysis revealed the influence from each component on the crystalline phase. DSC results demonstrated the greater flexibility of the polymer chains, which favored ionic conduction. SEM examination revealed the smooth and homogeneous surface morphology of the plasticized polymer electrolyte films. EIS suggested that the temperature dependence of the films' ionic conductivity obeyed the Vogel,Tamman,Fulcher (VTF) relation, and that the segmental movement of the polymer chains was closely related to ionic conduction with increasing temperature. The pre-exponential factor and pseudo activation energy both increased with increasing plasticizer content and were maximized at 40 wt% plasticizer content. The charge transport in all polymer electrolyte films was predominantly reliant on lithium ions. All transference numbers were less than 0.5. Copyright © 2006 Society of Chemical Industry [source]