Home About us Contact | |||
Plasma Vitellogenin (plasma + vitellogenin)
Selected AbstractsSeasonal evaluation of reproductive status and exposure to environmental estrogens in hornyhead turbot at the municipal wastewater outfall of Orange County, CAENVIRONMENTAL TOXICOLOGY, Issue 5 2007Xin Deng Abstract Seasonal changes in developmental stages, condition factor (CF), gonadosomatic index, and plasma vitellogenin (Vtg) concentrations in male and female hornyhead turbot were examined at the wastewater outfall (T1) of the Orange County Sanitation District, and two farfield sites T11 (7.7 km northwest of the outfall) and Dana Point (35 km south of the outfall) between February 2005 and May 2006. Fish collected from the three sites exhibited male-oriented sex ratios. With few exceptions, developmental stages, CF, and GSI of both genders and plasma Vtg concentrations of females were not significantly different in samples collected from different sites at the same sampling period. More advanced gonad developmental stages and higher plasma Vtg concentrations in females were observed in August, indicating the seasonality of the reproductive cycle for this species. Plasma Vtg concentrations in males were observed in all of the sampling sites with the highest prevalence at T11 relative to T1 and Dana Point. The Vtg expression in males from the three sampling sites indicated widespread exposure to estrogenic compounds in waters of coastal California. However, the histopathological and reproductive relevance of the responses appeared to be insignificant and may not affect the population in these locations. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 464,471, 2007. [source] Exposure of three generations of the estuarine sheepshead minnow (Cyprinodon variegatus) to the androgen, 17,-trenbolone: Effects on survival, development, and reproductionENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010Geraldine M. Cripe Abstract Estimating long-term effects of endocrine-disrupting chemicals on a species is important to assessing the overall risk to the populations. The present study reports the results of a 42-week exposure of estuarine sheepshead minnows (Cyprinodon variegatus) to the androgen, 17,-trenbolone (Tb) conducted to determine if partial-(F0) or single-generation (F1) fish exposures identify multigenerational (F0,F3) effects of androgens on fish. Adult F0 fish were exposed to 0.007, 0.027, 0.13, 0.87,and 4.1,µg Tb/L, the F1 generation to ,0.87,µg Tb/L, the F2 fish to ,0.13,µg Tb/L, and the F3 fish to ,0.027,µg Tb/L. The highest concentrations with reproducing populations at the end of the F0, F1, and F2 generations were 4.1, 0.87, and 0.027,µg Tb/L, respectively. Reproduction in the F0, F1, and F2 generations was significantly reduced at 0.87, 0.027, and 0.027,µg Tb/L, respectively. Fish were significantly masculinized in the F1 generation exposed to 0.13 µg Tb/L or greater. Female plasma vitellogenin was significantly reduced in F0 fish exposed to ,0.87,µg Tb/L. Gonadosomatic indices of the F0 and F1 generations were significantly increased at 0.87 and 0.13 µg Tb/L in the F0 and F1 generation, respectively, and were accompanied by ovarian histological changes. Reproduction was the most consistently sensitive measure of androgen effects and, after a life-cycle exposure, the daily reproductive rate predicted concentrations affecting successive generations. The present study provides evidence that a multiple generation exposure of fish to some endocrine-disrupting chemicals can result in developmental and reproductive changes that have a much greater impact on the success of a species than was indicated from shorter term exposures. Environ. Toxicol. Chem. 2010;29:2079,2087. © 2010 SETAC [source] Aqueous exposure to 4-nonylphenol and 17,-estradiol increases stress sensitivity and disrupts ion regulatory ability of juvenile Atlantic salmonENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2007Darren T. Lerner Abstract Population declines of wild Atlantic salmon have been attributed to an array of anthropogenic disturbances, including dams, commercial and recreational fishing, habitat loss, and pollution. Environmental contaminants in particular, can act as environmental stressors on fish, typically causing disruption of ion homeostasis due to their close association with the aquatic environment. To examine the effects of the xenoestrogen 4-nonylphenol (NP) or 17,-estradiol (E2) on stress sensitivity and ion regulation, we exposed juvenile Atlantic salmon continuously for 21 d to either 10 or 100 ,g/L NP (NP-L or NP-H), 2 ,g/L E2 (positive control), or vehicle control during the parr-smolt transformation in April. After treatment, fish were sampled in freshwater (FW), transferred to 30, seawater (SW) for 24 h, or subjected to a handling stress. Estradiol and NP-H increased plasma vitellogenin in males and females, and E2 increased gonadosomatic index only in males. In FW, E2 reduced sodium potassium,activated adenosine triphosphatase activity as well as plasma levels of growth hormone, insulin-like growth factor I, and triiodothyronine. Both E2 and NP-H reduced plasma sodium in FW and increased plasma chloride in SW. Plasma Cortisol levels pre- and poststressor were significantly elevated by all treatments relative to controls, but only E2 increased plasma glucose before and after the stressor. These results indicate that exposure of anadromous salmonids to environmental estrogens heightens sensitivity to external stressors, impairs ion regulation in both FW and SW, and disrupts endocrine pathways critical for smolt development. [source] Evaluation of the methoxytriazine herbicide prometon using a short-term fathead minnow reproduction test and a suite of in vitro bioassaysENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2006Daniel L. Villeneuve Abstract Prometon is one of the most consistently detected herbicides in the U.S. environment. However, no previous assessment of the potential for prometon or related methoxytriazine herbicides to act as endocrine-disrupting chemicals has been conducted. This study used an array of in vitro bioassays to assess whether prometon, atraton, terbumeton, or secbumeton might act as potent (ant)agonists of the aryl hydrocarbon, estrogen, androgen, or glucocorticoid receptors or as aromatase inhibitors or inducers in vitro. Potential effects of prometon were also evaluated using a 21-d fathead minnow reproduction assay. Concentrations of methoxytriazines, as great as 1 mg/L (4.4 ,M), did not induce significant dioxin-like responses in H4IIE-luc cells, estrogenic responses in MVLN cells, or androgen or glucocorticoid receptor,mediated responses in MDA-kb2 cells, nor did the methoxytriazines significantly affect aromatase activity in vitro. In the fathead minnow assay, exposure to 20, 200, or 1,000 ,g prometon/L significantly reduced the weight of the male fat pad (an androgen-responsive tissue) relative to body weight. Exposure to 20 ,g prometon/L significantly increased female plasma testosterone concentrations, but the effect was not observed at greater concentrations. Overall, prometon did not significantly reduce fecundity over the 21-d exposure, nor were other endpoints, including plasma vitellogenin and estradiol concentrations, brain and ovary aromatase activity, and male tubercle index, significantly affected. Evidence from our work suggests that prometon may cause subtle endocrine and/or reproductive effects in fathead minnows, but no clear mechanism of action was observed. The relevance of these effects to hazard assessment for the pesticide is uncertain. [source] Biological measurement of estrogenic activity in urine and bile conjugates with the in vitro ER-CALUX reporter gene assayENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2002Juliette Legler Abstract Although estrogens are excreted as biologically inactive conjugates, they can be reconverted to an active form, possibly by bacteria. A simple method was developed to deconjugate estrogen metabolites present in human urine and fish bile back to active estrogens by enzymatic hydrolysis with ,-glucuronidase or live Escherichia coli cells. Deconjugated extracts were tested for estrogenic activity in the in vitro stable estrogen receptor,mediated chemical-activated luciferase gene expression (ER-CALUX) assay. Estrogen glucuronides in urine obtained from human males and females were effectively converted to active forms after incubation with ,-glucuronidase or E. coli. The highest estrogenic activity was found in deconjugated metabolites from urine of a pregnant woman, in which levels up to 3,000 nmol estradiol equivalents per liter of urine were found after overnight incubation of urine with E. coli. Bile sampled from male bream and flounder from various freshwater and marine locations was also deconjugated and a good correlation was found between high biliary estrogenic activity and elevated levels of xenoestrogenic activity in surface water as well as in plasma vitellogenin. Therefore, the measurement of deconjugated bile could form a useful (indirect) biomarker for internal dose of xenoestrogens in male fish. [source] Altered gene expression in the brain and liver of female fathead minnows Pimephales promelas Rafinesque exposed to fadrozoleJOURNAL OF FISH BIOLOGY, Issue 9 2008D. L. Villeneuve The fathead minnow Pimephales promelas is a small fish species widely used for ecotoxicology research and regulatory testing in North America. This study used a 2000 gene oligonucleotide microarray to evaluate the effects of the aromatase inhibitor, fadrozole, on gene expression in the liver and brain tissue of exposed females. Reproductive measures, plasma vitellogenin and gene expression data for the brain isoform of aromatase (cytP19B), vitellogenin precursors and transferrin provided evidence supporting the efficacy of the fadrozole exposure. Unsupervised analysis of the microarray results identified 20 genes in brain and 41 in liver as significantly up-regulated and seven genes in brain and around 45 in liver as significantly down-regulated. Differentially expressed genes were associated with a broad spectrum of biological functions, many with no obvious relationship to aromatase inhibition. However, in brain, fadrozole exposure elicited significant up-regulation of several genes involved in the cholesterol synthesis, suggesting it as a potentially affected pathway. Gene ontology-based analysis of expression changes in liver suggested overall down-regulation of protein biosynthesis. While real-time polymerase chain reaction analyses supported some of the microarray responses, others could not be verified. Overall, results of this study provide a foundation for developing novel hypotheses regarding the system-wide effects of fadrozole, and other chemical stressors with similar modes of action, on fish biology. [source] Influence of plasma lipid changes in response to 17,-oestradiol stimulation on plasma growth hormone, somatostatin, and thyroid hormone levels in immature rainbow troutJOURNAL OF FISH BIOLOGY, Issue 3 2001F. Mercure Plasma total lipids were significantly higher in 17,-oestradiol(E2)-treated immature rainbow trout Oncorhynchus mykiss at week 4 after implantation, due to increases in polar and neutral lipids. The lipid classes responding were phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, sterols and sterol esters, in a proportion that approximately reflected the increase in plasma vitellogenin (VtG) levels as measured by a non-competitive enzyme-linked immunosorbent assay (ELISA). Plasma non-esterified fatty acids and triacylglycerol were not affected by E2 treatment. Plasma growth hormone GH levels were increased, and plasma somatostatin-14 (SRIF) levels decreased in E2 -treated fish, responses which could be secondary to elevated plasma lipid (VtG) content, although a direct E2 action on somatotroph function is possible. Plasma T4 concentrations were not affected by E2 treatment, but plasma T3 concentrations were significantly lower than in controls 1 week after implantation when plasma E2 concentrations were the highest; this is in support of the hypothesis that E2 has a suppressive action on T3 production. [source] |