Home About us Contact | |||
PLA2
Terms modified by PLA2 Selected AbstractsPhospholipase A2 is present in meconium and inhibits the activity of pulmonary surfactant: an in vitro studyACTA PAEDIATRICA, Issue 4 2001AJJ Schrama Atelectasis, a major contributor to pulmonary dysfunction in meconium aspiration syndrome (MAS), is produced by bronchiolar obstruction and surfactant inactivation. It has been shown that substances in meconium, e.g. fatty acids, inhibit surfactant activity. However, the role of the enzyme phospholipase A2 (PLA2), which hydrolyses surfactant in adult respiratory distress syndrome (ARDS), has not yet been studied. Our objective was to investigate whether PLA2 is present in meconium and inhibits pulmonary surfactant activity in vitro. Therefore, the presence of PLA2 activity in meconium, collected from 10 newborns, was measured by the formation of lysophosphatidylcholine after incubation of meconium with radioactively labelled dipalmitoylphosphati-dylcholine. Meconium was fractionated by Sephadex G-100 column chromatography and the fractions were assayed for PLA2 activity. Also, their effect on the surface tension of surfactant (Curosurf) was measured using a pulsating bubble surfactometer (PBS). PLA2 activity was present in all meconium samples. Addition of meconium to surfactant significantly increased surface tension (mean ± SD: 17 ± 1.6 mN/m to 24.3 ± 6.7 mN/m, p= 0.0001) and only the addition of the PLA2 containing fraction from meconium to surfactant also significantly increased surface tension (mean 1.7 ± 1.6mN/m to 19.0 ± 3.58 mN/m, p < 0.0001). Conclusion: PLA2 is present in meconium and inhibits the activity of pulmonary surfactant in vitro. Therefore, PLA2 in meconium may contribute to surfactant inactivation and alveolar ateectasis in MAS. [source] Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxiaACTA PHYSIOLOGICA, Issue 1-2 2006I. H. Lambert Abstract Phospholipase A2 (PLA2) activity is increased in mammalian cells in response to numerous stimuli such as osmotic challenge, oxidative stress and exposure to allergens. The increased PLA2 activity is seen as an increased release of free, polyunsaturated fatty acids, e.g. arachidonic acid and membrane-bound lysophospholipids. Even though arachidonic acid acts as a second messenger in its own most mammalian cells seem to rely on oxidation of the fatty acid into highly potent second messengers via, e.g. cytochrome P450, the cyclo-oxygenase, or the lipoxygenase systems for downstream signalling. Here, we review data that illustrates that stress-induced PLA2 activity involves various PLA2 subtypes and that the PLA2 in question is determined by the cell type and the physiological stress condition. [source] Initial stages of neural regeneration in Helisoma trivolvis are dependent upon PLA2 activityDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2003Matthew S. Geddis Abstract Neuronal regeneration after damage to an axon tract requires the rapid sealing of the injured plasma membrane and the subsequent formation of growth cones that can lead regenerating processes to their appropriate target. Membrane sealing and growth cone formation are Ca2+ -dependent processes, but the signaling pathways activated by Ca2+ to bring about these effects remain poorly understood. An in vitro injury model was employed in which neurites from identified snail neurons (Helisoma trivolvis) were transected with a glass microknife, and the formation of new growth cones from the distal portions of transected neurites was recorded at defined times after transection. This study presents three main results. First, phospholipase A2 (PLA2), a calcium-activated enzyme, is necessary for membrane sealing in vitro. Second, PLA2 activity is also required for the formation of a new growth cone after the membrane has sealed successfully. Thus, PLA2 plays a dual role by affecting both growth cone formation and membrane sealing. Third, the injury-induced activation of PLA2 by Ca2+ controls growth cone formation through the production of leukotrienes, secondary metabolites of PLA2 activity. Taken together, these results suggest that the injury-induced Ca2+ influx acts via PLA2 and leukotriene production to assure growth cone formation. These findings indicate that events that cause an inhibition of PLA2 or lipoxygenases, enzymes that produce leukotrienes, could result in the inability of neurites to regenerate. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 555,565, 2003 [source] Phospholipase stimulates lipogenesis in SZ95 sebocytesEXPERIMENTAL DERMATOLOGY, Issue 7 2008S. Schagen Introduction:, With progressing ageing human sebocytes reduce lipid production. However, the influence of certain aging mechanisms on sebaceous lipid synthesis as well as ways to influence the latter is not fully identified. Certain lipids act as ligands of nuclear receptors such as PPAR. Phospholipase (PLA2) catalyzes the hydrolysis of the sn-2 fatty acyl bond of phospholipids to yield free fatty acid and lysophospholipid. It has been hypothesized that PPAR may be activated by hydrolysis products of phospholipids and also by eicosanoids obtained through PLA2 activity. Materials and Methods:, A method to quantify sebaceous lipid synthesis of SZ95 sebocytes in vitro was established and the cells were treated by snake venom Bothrops moojeni gel filtration fractions (Botmo GF). Botmo GF fractions were further purified by RP-HPLC, and a fraction with PLA2 activity (Botmo GF11-117) and a fraction without enzymatic activity (Botmo GF11-101) were identified and additionally tested. Results:, Botmo GF fractions increased lipogenesis in SZ95 sebocytes without inducing apparent toxic or apoptotic effects. Botmo GF11-101 (1 ,g/ml) enhanced neutral lipid synthesis by up to 170% and polar lipid synthesis by up to 120%. The enzymatically active PLA2 Botmo GF11-117 (1 ,g/ml) increased synthesis of neutral lipids by up to 200%, and polar lipids by up to 120% compared to untreated SZ95 sebocytes. Conclusion:, PLA2 activation or suppression could be important for human sebaceous lipogenesis. PLA2 modifiers may be attractive for skin lipid research and pharmacological/cosmetic products. [source] Enhancement of Ca2+ -regulated exocytosis by indomethacin in guinea-pig antral mucous cells: arachidonic acid accumulationEXPERIMENTAL PHYSIOLOGY, Issue 1 2006Shoko Fujiwara Ca2+ -regulated exocytosis is enhanced by an autocrine mechanism via the PGE2,cAMP pathway in antral mucous cells of guinea-pigs. The inhibition of the PGE2,cAMP pathway by H-89 (an inhibitor of protein kinase A, PKA) or aspirin (ASA, an inhibitor of cyclo-oxygenase, COX) decreased the frequency of ACh-stimulated exocytotic events by 60%. Indomethacin (IDM, an inhibitor of COX), however, decreased the frequency of ACh-stimulated exocytotic events only by 30%. Moreover, IDM increased the frequency of ACh-stimulated exocytotic events by 50% in H-89-treated or ASA-treated cells. IDM inhibits the synthesis of Prostaglandin (PGG/H) and (15R)-15-hydroxy-5,8,11 cis-13-trans-eicosatetraenoic acid (15R-HPETE), while ASA inhibits only the synthesis of PGG/H. Thus, IDM may accumulate arachidonic acid (AA). AACOCF3 or N -(p -amylcinnamoyl) anthranilic acid (ACA; both inhibitors of phospholipase A2, PLA2), which inhibits AA synthesis, decreased the frequency of ACh-stimulated exocytotic events by 60%. IDM, however, did not increase the frequency in AACOCF3 -treated cells. AA increased the frequency of ACh-stimulated exocytotic events in AACOCF3 - or ASA-treated cells, similar to IDM in ASA- and H-89-treated cells. Moreover, in the presence of AA, IDM did not increase the frequency of ACh-stimulated exocytotic events in ASA-treated cells. The PGE2 release from antral mucosa indicates that inhibition of PLA2 by ACA inhibits the AA accumulation in unstimulated and ACh-stimulated antral mucosa. The dose,response study of AA and IDM demonstrated that the concentration of intracellular AA accumulated by IDM is less than 100 nm. In conclusion, IDM modulates the ACh-stimulated exocytosis via AA accumulation in antral mucous cells. [source] Functional analysis of DM64, an antimyotoxic protein with immunoglobulin-like structure from Didelphis marsupialis serumFEBS JOURNAL, Issue 24 2002Surza L. G. Rocha Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis. The opossum Didelphis marsupialis is resistant to these snake venoms and has natural venom inhibitors in its plasma. The aim of this work was to clone and study the chemical, physicochemical and biological properties of DM64, an antimyotoxic protein from opossum serum. DM64 is an acidic protein showing 15% glycosylation and with a molecular mass of 63 659 Da when analysed by MALDI-TOF MS. It was cloned and the amino acid sequence was found to be homologous to DM43, a metalloproteinase inhibitor from D. marsupialis serum, and to human ,1B-glycoprotein, indicating the presence of five immunoglobulin-like domains. DM64 neutralized both the in vivo myotoxicity and the in vitro cytotoxicity of myotoxins I (mt-I/Asp49) and II (mt-II/Lys49) from Bothrops asper venom. The inhibitor formed noncovalent complexes with both toxins, but did not inhibit the PLA2 activity of mt-I. Accordingly, DM64 did not neutralize the anticoagulant effect of mt-I nor its intracerebroventricular lethality, effects that depend on its enzymatic activity, and which demonstrate the dissociation between the catalytic and toxic activities of this Asp49 myotoxic PLA2. Furthermore, despite its similarity with metalloproteinase inhibitors, DM64 presented no antihemorrhagic activity against Bothrops jararaca or Bothrops asper crude venoms, and did not inhibit the fibrinogenolytic activity of jararhagin or bothrolysin. This is the first report of a myotoxin inhibitor with an immunoglobulin-like structure isolated and characterized from animal blood. [source] Molecular mechanisms underlying inflammatory lung diseases in the elderly: Development of a novel therapeutic strategy for acute lung injury and pulmonary fibrosis,GERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 3 2005Takahide Nagase In the elderly, inflammatory lung diseases, including acute lung injury and pulmonary fibrosis, are significant in terms of both mortality and difficulty in management. Acute respiratory distress syndrome (ARDS) is an acute lung injury and the mortality rate for ARDS ranges from 40 to 70% despite intensive care. Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disorder of the lung parenchyma. No useful drugs are currently available to treat IPF. However, molecular mechanisms underlying these lung diseases are little understood and the development of a novel therapeutic strategy is urgently needed. Platelet-activating factor (PAF) and metabolites of arachidonic acid, i.e. eicosanoids, are lipid mediators that have various biological effects. A key enzyme for the production of these inflammatory mediators, including eicosanoids and PAF, is phospholipase A2. In particular, cytosolic PLA2 (cPLA2) is especially important. The purpose of this article is to report novel findings regarding the role of PAF and cPLA2 in lung inflammatory diseases, especially, acute lung injury and pulmonary fibrosis. To address this question, we used mutant mice, i.e. PAFR transgenic mice, PAFR gene-disrupted mice and cPLA2 gene-disrupted mice. We have shown that PAF and eicosanoids, downstream mediators of cPLA2, may be involved in the pathogenesis of ARDS and IPF, which are important diseases in the elderly. Although there exist extreme differences in clinical features between ARDS and IPF, both diseases are fatal disorders for which no useful drugs are currently available. On the basis of recent reports using mutant mice, cPLA2 might be a potential target to intervene in the development of pulmonary fibrosis and acute lung injury in the elderly. [source] Role of phospholipases A2 in growth-dependent changes in prostaglandin release from 3T6 fibroblastsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2001Teresa Sánchez Previously, we reported a growth-dependent change in prostaglandin production as a consequence of a marked growth-dependent alteration in arachidonic acid (AA) mobilization from phospholipids. Our present results show that fetal calf serum (FCS) and 4,-phorbol-12-myristate acetate (PMA) caused an enhancement of phospholipase A2 (PLA2) activity in the membrane fraction of non-confluent cells allowing PLA2 access to its substrate and the release of AA. Western blot analysis has shown that FCS and PMA increased secreted PLA2 (sPLA2) expression in non-confluent 3T6 fibroblast cultures. Moreover, FCS and PMA induced dithiothreitol-sensitive and bromoenol lactone-sensitive PLA2 activities in cytosol and membrane fraction. However, these stimuli did not modify significantly the PLA2 activity in both fractions when 3T6 fibroblasts reached a high cell density. This could be associated with the impairment of AA mobilization in these cell culture conditions. On the other hand, we observed that FCS and PMA induced the same prostaglandin H synthase-2 induction in non-confluent and confluent culture conditions. Moreover, the prostaglandin E2 levels reached in cell culture supernatants were independent of the degree of confluence when AA was added exogenously. These results suggest that the changes of intracellular distribution of PLA2 activity of sPLA2 and iPLA2 stimulated by exogenous stimuli may be controlled by cell density conditions which constitute an important mechanism in the regulation of prostaglandin release.© 2001 Wiley-Liss, Inc. [source] Simultaneous inhibition of anti-coagulation and inflammation: crystal structure of phospholipase A2 complexed with indomethacin at 1.4,Å resolution reveals the presence of the new common ligand-binding siteJOURNAL OF MOLECULAR RECOGNITION, Issue 6 2009Nagendra Singh Abstract A novel ligand-binding site with functional implications has been identified in phospholipase A2 (PLA2). The binding of non-steroidal anti-inflammatory agent indomethacin at this site blocks both catalytic and anti-coagulant actions of PLA2. A group IIA PLA2 has been isolated from Daboia russelli pulchella (Russell's viper) which is enzymatically active as well as induces a strong anti-coagulant action. The binding studies have shown that indomethacin reduces the effects of both anti-coagulant and pro-inflammatory actions of PLA2. A group IIA PLA2 was co-crystallized with indomethacin and the structure of the complex has been determined at 1.4,Å resolution. The structure determination has revealed the presence of an indomethacin molecule in the structure of PLA2 at a site which is distinct from the conventional substrate-binding site. One of the carboxylic group oxygen atoms of indomethacin interacts with Asp 49 and His 48 through the catalytically important water molecule OW 18 while the second carboxylic oxygen atom forms an ionic interaction with the side chain of Lys 69. It is well known that the residues, His 48 and Asp 49 are essential for catalysis while Lys 69 is a part of the anti-coagulant loop (residues, 54,77). Indomethacin binds in such a manner that it blocks the access to both, it works as a dual inhibitor for catalytic and anti-coagulant actions of PLA2. This new binding site in PLA2 has been observed for the first time and indomethacin is the first compound that has been shown to bind at this novel site resulting in the prevention of anti-coagulation and inflammation. Copyright © 2009 John Wiley & Sons, Ltd. [source] Calcium in the mechanism of ammonia-induced astrocyte swellingJOURNAL OF NEUROCHEMISTRY, Issue 2009Arumugam R. Jayakumar Abstract Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator 1,2-bis-(o -aminophenoxy)-ethane- N,N,- N,,N, -tetraacetic acid tetraacetoxy-methyl ester (BAPTA). We then examined the activity of Ca2+ -dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS), and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pre-treatment of cultures with 7-nitroindazole, apocyanin, and quinacrine, respective inhibitors of cNOS, NOX, and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX, and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling. [source] The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseasesJOURNAL OF NEUROCHEMISTRY, Issue 1 2007Grace Y. Sun Abstract Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca2+ -dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A2 (PLA2). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA2, namely, the group IV cytosolic cPLA2 and the group II secretory sPLA2. A major focus is to elaborate the dual role of NADPH oxidase and PLA2 in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA2 will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases. [source] Lipopolysaccharides enhance the action of bradykinin in enteric neurons via secretion of interleukin-1, from enteric glial cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2009Matsuka Murakami Abstract Functional changes of the enteric nervous system have been observed under inflammatory states of inflammatory bowel disease increasing the endotoxin level. The aim of the present study was to determine the effect of lipopolysaccharides (LPS) on myenteric neuron,glia interaction in vitro. We examined the increase of the intracellular Ca2+ concentration ([Ca2+]i) and the release of interleukin-1, (IL-1,) or prostaglandin E2 (PGE2) and COX-2 expression in myenteric plexus cells from the rat intestine induced by LPS. LPS potentiated BK-induced [Ca2+]i increases in both myenteric neurons and enteric glial cells, which were suppressed by a B1R antagonist. Only in enteric glial cells, a B1R agonist increased [Ca2+]i. The effects of LPS were blocked by pretreatment with an interleukin-1 receptor antagonist or by reducing the density of enteric glial cells in culture. LPS prompted the release of IL-1, from enteric glial cells. The augmenting effects of IL-1, on the BK-induced neural [Ca2+]i increase and PGE2 release from enteric glial cells were abolished by a phospholipase A2 (PLA2) inhibitor and a COX inhibitor, and partly suppressed by a COX-2 inhibitor. IL-1, up-regulated the COX-2 expression in enteric glial cells. LPS promotes IL-1, secretion from enteric glial cells, resulting in augmentation of the neural response to BK through PGE2 release via glial PLA2 and COX-2. The alteration of the regulatory effect of glial cells may be the cause of the changes in neural function in the enteric nervous system in inflammatory bowel disease. © 2009 Wiley-Liss, Inc. [source] Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicideJOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2007Akhlaq A. Farooqui Abstract The neural membranes contain phospholipids, sphingolipids, cholesterol, and proteins. Glycerophospholipids and sphingolipids are precursors for lipid mediators involved in signal transduction processes. Degradation of glycerophospholipids by phospholipase A2 (PLA2) generates arachidonic acid (AA) and docosahexaenoic acids (DHA). Arachidonic acid is metabolized to eicosanoids and DHA is metabolized to docosanoids. The catabolism of glycosphingolipids generates ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. These metabolites modulate PLA2 activity. Arachidonic acid, a product derived from glycerophospholipid catabolism by PLA2, modulates sphingomyelinase (SMase), the enzyme that generates ceramide and phosphocholine. Furthermore, sphingosine 1-phosphate modulates cyclooxygenase, an enzyme responsible for eicosanoid production in brain. This suggests that an interplay and cross talk occurs between lipid mediators of glycerophospholipid and glycosphingolipid metabolism in brain tissue. This interplay between metabolites of glycerophospholipid and sphingolipid metabolism may play an important role in initiation and maintenance of oxidative stress associated with neurologic disorders as well as in neural cell proliferation, differentiation, and apoptosis. Recent studies indicate that PLA2 and SMase inhibitors can be used as neuroprotective and anti-apoptotic agents. Development of novel inhibitors of PLA2 and SMase may be useful for the treatment of oxidative stress, and apoptosis associated with neurologic disorders such as stroke, Alzheimer disease, Parkinson disease, and head and spinal cord injuries. © 2007 Wiley-Liss, Inc. [source] Mutations on N -terminal region of Taiwan cobra phospholipase A2 result in structurally distorted effectsJOURNAL OF PEPTIDE SCIENCE, Issue 8 2008Yi-Ling Chiou Abstract In the present study, three Taiwan cobra PLA2 variants were prepared by adding an extra N -terminal Met, substituting Asn-1 by Met or deleting the N -terminal heptapeptide. Recombinant PLA2 mutants were expressed in Escherichia coli (E. coli), and purified to homogeneity by reverse phase HPLC. Fluorescence measurement showed that the hydrophobic character of the catalytic site, the microenvironment of Trp residues and energy transfer from excited Trp to 8-anilinonaphthalene sulfonate (ANS) were affected by N -terminal mutations. An alteration in the structural flexibility of the active site was noted with the mutants lacking the N -terminal heptapeptide or with an extra N -terminal Met added as evidenced by the inability of the two variants to bind with Ba2+. Moreover, modification of Lys residues and energy transfer within the protein-ANS complex revealed that the Ca2+ -induced change in the global structure of PLA2 was different from that in N -terminal variants. Together with the fact that an ,activation network' connects the N -terminus with the active site, our data suggest that mutagenesis on the N -terminal region affects directly the fine structure of the catalytic site, which subsequently transmits its influence in altering the structure outside the active site of PLA2. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source] Grape Polyphenols Inhibit Chronic Ethanol-Induced COX-2 mRNA Expression in Rat BrainALCOHOLISM, Issue 3 2002Agnes Simonyi Background: Chronic ethanol has been shown to increase oxidative stress leading to neurodegenerative changes in the brain. Oxidative stress may up-regulate extracellular signal regulated kinases (ERK1/2) and, subsequently, the arachidonic acid cascade mediated by phospholipase A2 (PLA2) and cyclooxygenase (COX-2). Our earlier study showed that grape polyphenols (GP) could ameliorate oxidative damage to synaptic membrane proteins due to chronic ethanol treatment. This study was aimed at examining the effects of GP on mRNA expression of ERK1/2, cytosolic PLA2 (cPLA2), and COX-2 in different brain regions after chronic ethanol treatment. Methods: Male Sprague-Dawley rats were fed a Lieber-DeCarli liquid diet with ethanol or isocaloric amount of maltose, with or without GP for 2 months. In situ hybridization was carried out using coronal brain sections through the hippocampus. Results: Quantitative in situ hybridization showed no changes in ERK1 and cPLA2 mRNA levels in cortical areas and hippocampus after ethanol and/or GP administration. However, a decrease in ERK2 and an increase in COX-2 mRNA level was found in the hippocampus of ethanol-treated animals. GP completely inhibited the increase in COX-2 due to ethanol treatment. Conclusion: Increase in COX-2 expression may be an underlying mechanism for the increase in oxidative stress induced by chronic ethanol administration. Dietary supplementation of GP may have a beneficial role in inhibiting certain alcohol effects. [source] The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitorsLASERS IN SURGERY AND MEDICINE, Issue 7 2007Wonbong Lim PhD Abstract Background and Objectives Inhibition of cyclooxygenase (COX) and prostaglandin E2 (PGE2) protects cells against cell injury in specific pathophysiological situations: inflammation and oxidative stress. Although the anti-inflammatory effects have been reported in clinical fields for specific wavelength irradiation during wound healing, the physiological mechanism has not been clarified yet. The aim of the present study is to investigate the anti-inflammatory mechanism of 635 nm light-emitting-diode (LED) irradiation compared with existing COX inhibitors. Study Design/Materials and Methods The present study investigated anti-inflammatory effects of 635 nm irradiation on PGE2 release, COX and phospholipase A2 (PLA2) expression, and reactive oxygen species (ROS) dissociation in arachidonic acid (AA)-treated human gingival fibroblast (hGF). These results were compared with their existing COX inhibitors: indomethacin and ibuprofen. The PGE2 release was measured by enzyme immunoassay, the COX expression was measured by western blot and reverse transcriptase polymerase chain reaction (RT-PCR), and ROS level was measured by flow cytometry, laser scanning confocal microscope and RT-PCR. Results Results showed that 635 nm irradiation and existing COX inhibitors inhibit expression of COX and PGE2 release. Unlike indomethacin and ibuprofen, 635 nm irradiation leads to a decrease of ROS levels and mRNA expression of cytosolic phospholipase A2 (cPLA2) and secretary phospholipase A2 (sPLA2). Conclusion Taken together, 635 nm irradiation, unlike indomethacin and ibuprofen, can directly dissociate the ROS. This inhibits cPLA2, sPLA2, and COX expression, and results in the inhibition of PGE2 release. Thus, we suggest that 635 nm irradiation inhibits PGE2 synthesis like COX inhibitor and appears to be useful as an anti-inflammatory tool. Lesers Surg. Med. 39:614,621, 2007. © 2007 Wiley-Liss, Inc. [source] Time-Resolved Small-Angle Neutron Scattering as a Tool for Studying Controlled Release from Liposomes using Polymer-Enzyme ConjugatesMACROMOLECULAR RAPID COMMUNICATIONS, Issue 19 2010Elaine L. Ferguson Abstract The action of phospholipase A2 (PLA2) on 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) liposomes (vesicles) , an integral component in the polymer enzyme liposome therapy (PELT) mechanism (R. Duncan et al., J. Controlled Release2001, 74, 135) for the controlled delivery of poorly soluble therapeutic molecules within liposomes , may be "masked" by conjugation to the biodegradable polymer dextrin and subsequently regenerated by the endogenous enzyme , -amylase that degrades the dextrin; that is, incorporating the so-called polymer-unmasked-masked protein therapy (PUMPT) approach (R. Duncan, et al. Biomacromolecules2008, 9, 1146). Small-angle neutron scattering (SANS) has been used to quantify the detailed structure of DPPC liposomes and any perturbation in that structure induced by the presence of PLA2 in native, "masked" (dextrin,PLA2 conjugate) and an in situ , -amylase-unmasked form. A time-dependent degradation of the vesicular structure was observed for the two active PLA2 cases, but not for the masked case. This study demonstrates that the PLA2 -induced hydrolysis of the DPPC , and the associated rupture of the liposome and the release of the enclosed material , may be controlled through masking with dextrin. Accordingly, the viability of using such a combinatorial nanomedicine approach as a general route for the controlled delivery of poorly soluble therapeutic molecules is shown. [source] Proteins of the accessory sex glands associated with the oocyte-penetrating capacity of cauda epididymal sperm from holstein bulls of documented fertilityMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2007Arlindo A. Moura Abstract We previously reported that accessory sex gland fluid (AGF) from high fertility (HF) bulls influenced the oocyte-penetrating capacity of cauda epididymal sperm from low fertility (LF) bulls, based on in vitro fertilization (IVF) assays. The present study determined if AGF proteins were associated with these effects. Nineteen IVF assays with 12 bulls were grouped as follows. Group I (n,=,8): assays where sperm from LF bulls exposed to AGF from HF bulls had greater oocyte penetration than exposed to homologous AGF. Group II (n,=,7): sperm from LF bulls to AGF from HF bulls versus homologous AGF showed no significant differences. Group III (n,=,4): sperm from LF bulls treated with homologous AGF had greater fertility than sperm treated with AGF from HF bulls. Sire fertility was based on nonreturn rates (NNR) and AGF collected by artificial vagina from bulls with cannulated vasa deferentia. Two-dimensional SDS,PAGE maps of AGF were analyzed by PDQuest and proteins identified by tandem mass spectrometry and Western blots. Differences in spot intensity between AGF of HF and LF bulls were compared across groups of IVF assays (P,<,0.05). The expression of BSP A1/A2 and A3, BSP 30 kDa, clusterin, albumin, phospholipase A2 (PLA2), and osteopontin was greater in the AGF of HF bulls in Group I as compared to Groups II and III. Conversely, there was less nucleobindin in the AGF of HF bulls in Group I than in Groups II and III. This is the first report of nucleobindin (58 kDa/pI 5.6) in male reproductive fluids, using both immunoblots and mass spectrometry. Thus, the effect of AGF from HF bulls on epididymal sperm is likely the result of specific proteins expressed in the AGF. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] Platelet-activating factor and human meningiomasNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 6 2006Y. Denizot Meningiomas are common primary intracranial tumours. Platelet-activating factor (PAF) is an inflammatory and angiogenic lipid mediator involved in several types of cancer. The presence of PAF receptor (PAF-R) transcripts, the levels of PAF, the phospholipase A2 activity (PLA2, the enzymatic activity implicated in PAF formation) and the PAF acetylhydrolase activity (AHA, the PAF degrading enzyme) were investigated in 49 human meningiomas. PAF-R transcripts, PAF, PLA2 and AHA were detected in meningiomas. However, their levels did not correlate with biological parameters such as the tumour grade, the presence of associated oedema, necrosis, mitotic index as well as intensity of the neovascularization and chronic inflammatory response. In conclusion, PAF is present in meningiomas where it might act on tumour growth by altering the local angiogenic and/or cytokine networks as previously suggested for human breast and colorectal cancer. [source] Anti-snake venom properties of Schizolobium parahyba (Caesalpinoideae) aqueous leaves extractPHYTOTHERAPY RESEARCH, Issue 7 2008Mirian M. Mendes Abstract Many medicinal plants have been recommended for the treatment of snakebites. The aqueous extracts prepared from the leaves of Schizolobium parahyba (a plant found in Mata Atlantica in Southeastern Brazil) were assayed for their ability to inhibit some enzymatic and biological activities induced by Bothrops pauloensis and Crotalus durissus terrificus venoms as well as by their isolated toxins neuwiedase (metalloproteinase), BnSP-7 (basic Lys49 PLA2) and CB (PLA2 from crotoxin complex). Phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic activities induced by B. pauloensis and C. d. terrificus venoms, as well as by their isolated toxins were significantly inhibited when different amounts of S. parahyba were incubated previously with these venoms and toxins before assays. However, when S. parahyba was administered at the same route as the venoms or toxins injections, the tissue local damage, such as hemorrhage and myotoxicity was only partially inhibited. The study also evaluated the inhibitory effect of S. parahyba upon the spreading of venom proteins from the injected area into the systemic circulation. The neutralization of systemic alterations induced by i.m. injection of B. pauloensis venom was evaluated by measuring platelet and plasma fibrinogen levels which were significantly maintained when S. parahyba extract inoculation occurred at the same route after B. pauloensis venom injection. In conclusion, the observations confirmed that the aqueous extract of S. parahyba possesses potent snake venom neutralizing properties. It may be used as an alternative treatment to serum therapy and as a rich source of potential inhibitors of toxins involved in several physiopathological human and animal diseases. Copyright © 2008 John Wiley & Sons, Ltd. [source] Inhibition of platelet phospholipase A2 activity by catuaba extract suggests antiin,ammatory propertiesPHYTOTHERAPY RESEARCH, Issue 11 2004Nádia R. Barbosa Abstract In the in,ammation process, phospholipase A2 (PLA2) catalyses the cleavage of the sn -2 ester-linked fatty acids from phospholipids, being the enzyme responsible for arachidonic acid (AA) release by cells for the biosynthesis of the prostaglandins and thromboxanes via the cyclooxygenase system, and the leukotrienes and eicosatetraenoids via the lipoxygenase pathway. AA mobilization by PLA2 and subsequent prostaglandins synthesis is considered to be a pivotal event in in,ammation. Therefore, drugs that inhibit PLA2, thus blocking the COX and LOX pathways in the AA cascade, may be effective in the treatment of in,ammatory processes. New strategies for the treatment of in,ammatory processes could be detected by a search for active principles of vegetal origin that control the lipid mediator production by inhibition of PLA2. The present data are part of a wide explorative investigation on the effects of Trichilia catigua (catuaba), which found that PLA2 activity was totally inhibited by catuaba at a concentration of 120 µg/mL, suggesting that this natural substance may have antiin,ammatory properties. Copyright © 2004 John Wiley & Sons, Ltd. [source] Effects of tanshinone I isolated from Salvia miltiorrhiza Bunge on arachidonic acid metabolism and in vivo inflammatory responsesPHYTOTHERAPY RESEARCH, Issue 7 2002Sung Young Kim Abstract Arachidonic acid (AA) mainly released from the cell membrane by phospholipase A2 (PLA2) is converted to eicosanoids by the action of cyclooxygenase (COX) and lipoxygenase (LO). In order to find the specific inhibitors of AA metabolism especially PLA2 and COX-2, 300 plant extracts were evaluated for their inhibitory activity on PGD2 production from cytokine-induced mouse bone marrow-derived mast cells in vitro. From this screening procedure, the methanol extract of Salvia miltiorrhiza was found to inhibit PGD2 production and the ethyl,acetate subfraction gave the strongest inhibition of five subfractions tested. From this ethyl,acetate subfraction, an activity-guided isolation finally gave tanshinone I as an active principle. This investigation deals with the effects of tanshinone I on AA metabolism from lipopolysaccharide (LPS)-induced RAW 264.7 cells and in vivo antiinflammatory activity. Tanshinone I inhibited PGE2 formation from LPS-induced RAW macrophages (IC50,=,38,,M). However, this compound did not affect COX-2 activity or COX-2 expression. Tanshinone I was found to be an inhibitor of type IIA human recombinant sPLA2(IC50,=,11,,M) and rabbit recombinant cPLA2 (IC50,=,82,,M). In addition, tanshinone I showed in vivo antiinflammatory activity in rat carrageenan-induced paw oedema and adjuvant-induced arthritis. Copyright © 2002 John Wiley & Sons, Ltd. [source] Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methyl-4-nitro-1H -pyrazole are mediated by lipid signallingPLANT CELL & ENVIRONMENT, Issue 11 2005FERNANDO ALFEREZ ABSTRACT The compound 5-chloro-3-methyl-4-nitro-1H -pyrazole (CMNP) is a pyrazole-derivative that induces abscission selectively in mature citrus (Citrus sinensis) fruit when applied to the canopy and has herbicidal activity on plants when applied to roots. Despite the favourable efficacy of this compound, the mode of action remains unknown. To gain information about the mode of action of CMNP, the effect of application to mature citrus fruit and Arabidopsis thaliana roots was explored. Peel contact was essential for mature fruit abscission in citrus, whereas root drenching was essential for symptom development and plant decline in Arabidopsis. CMNP was identified as an uncoupler in isolated soybean (Glycine max) mitochondria and pea (Pisum sativum) chloroplasts and an inhibitor of alcohol dehydrogenase in citrus peel, but not an inhibitor of protoporphyrinogen IX oxidase. CMNP treatment reduced ATP content in citrus peel and Arabidopsis leaves. Phospholipase A2 (PLA2) and lipoxygenase (LOX) activities, and lipid hydroperoxide (LPO) levels increased in flavedo of citrus fruit peel and leaves of Arabidopsis plants treated with CMNP. An inhibitor of PLA2 activity, aristolochic acid (AT), reduced CMNP-induced increases in PLA2 and LOX activities and LPO levels in citrus flavedo and Arabidopsis leaves and greatly reduced abscission in citrus and delayed symptoms of plant decline in Arabidopsis. However, AT treatment failed to halt the reduction in ATP content. Reduction in ATP content preceded the increase in PLA2 and LOX activities, LPO content and the biological response. The results indicate a link between lipid signalling, abscission in citrus and herbicidal damage in Arabidopsis. [source] Group IIA phospholipase A2 is coexpressed with SNAP-25 in mature taste receptor cells of rat circumvallate papillaeTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2006Hideaki Oike Abstract The taste buds are composed of heterogeneous cell populations with diverse properties and at different stages of maturity. It is important to define the relationships between cell properties and cell maturity to understand the molecular events involved in intracellular taste signaling. In the present study, in situ hybridization analysis indicated that group IIA phospholipase A2 (PLA2 -IIA) is expressed in a subset of taste bud cells. Immunohistochemical studies showed that PLA2 -IIA was expressed in a subset of cells expressing phospholipase C,2, a molecule essential for taste signaling in taste receptor cells, and also that some PLA2 -IIA-positive cells expressed gustducin (Ggust), a bitter-taste-signaling molecule. Although PLA2 -IIA and Ggust were expressed at similar frequencies in taste buds, bromodeoxyuridine (BrdU) chase experiments indicated that the expression of Ggust began 2 days after BrdU injection, whereas the expression of PLA2 -IIA commenced after 4 days. In addition, PLA2 -IIA was coexpressed with SNAP-25, a synaptosomal-associated protein. These results indicated that PLA2 -IIA is expressed in mature taste receptor cells that possess exocytotic machinery. J. Comp. Neurol. 494:876,886, 2006. © 2005 Wiley-Liss, Inc. [source] Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acidTHE PLANT JOURNAL, Issue 5 2002Sandrine Dhondt Summary We have previously isolated three tobacco genes (NtPat) encoding patatin-like proteins, getting rapidly induced during the hypersensitive response (HR) to tobacco mosaic virus, in advance to jasmonate accumulation. NtPAT enzymes are lipid acyl hydrolases that display high phospholipase A2 (PLA2) activity and may mobilize fatty acid precursors of oxylipins. Here, we performed a detailed study of NtPat gene regulation under various biotic and abiotic stresses. PLA2 activity was poorly induced in response to drought, wounding, reactive oxygen intermediates, salicylic acid (SA) or methyl-jasmonate (MJ) whereas the ethylene (ET) precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), provoked a moderate induction. In contrast, PLA2 activity was strongly induced when ACC was combined with MJ, and in response to the bacterium Erwinia carotovora or to the fungus Botrytis cinerea, as well as to treatment with ,-megaspermin, a cell death-inducing protein elicitor. A simplified system based on the infiltration of ,-megaspermin into leaves was used to dissect the spatio-temporal activation of PLA2 activity with regards to the accumulation of jasmonates and to the influence of endogenous SA. NtPat -encoded PLA2 activity was rapidly induced in the infiltrated zone before the appearance of cell death and with some delay in the surrounding living cells. A massive accumulation of 12-oxo-phytodienoic and jasmonic acids occurred in the elicitor-infiltrated zone, but only low levels were detectable outside this area. A similar picture was found in SA-deficient plants, showing that in tobacco, accumulation of jasmonates is not affected by the concomitant HR-induced build-up of endogenous SA. Finally, ET-insensitive plants showed a weakened induction of PLA2 activity outside the elicitor-infiltrated tissue. [source] Mechanistic Studies by Sum-Frequency Generation Spectroscopy: Hydrolysis of a Supported Phospholipid Bilayer by Phospholipase,A2,ANGEWANDTE CHEMIE, Issue 13 2010Yujin Tong Die Strukturänderungen bei der durch das PLA2 -Enzym katalysierten Hydrolyse einer DPPC-Doppelschicht und der Mechanismus dieser Reaktion wurden auf molekularer Ebene für jede Schicht (rot und schwarz) der trägerfixierten Lipiddoppelschicht mithilfe von Summenfrequenzspektroskopie untersucht (DPPC=Dipalmitoylphosphatidylcholin). [source] The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelaeAPMIS, Issue 11 2002Review article The literature dealing with the biochemical basis of bacteriolysis and its role in inflammation, infection and in post-infectious sequelae is reviewed and discussed. Bacteriolysis is an event that may occur when normal microbial multiplication is altered due to an uncontrolled activation of a series of autolytic cell-wall breaking enzymes (muramidases). While a low-level bacteriolysis sometimes occurs physiologically, due to "mistakes" in cell separation, a pronounced cell wall breakdown may occur following bacteriolysis induced either by beta-lactam antibiotics or by a large variety of bacteriolysis-inducing cationic peptides. These include spermine, spermidine, bactericidal peptides defensins, bacterial permeability increasing peptides from neutrophils, cationic proteins from eosinophils, lysozyme, myeloperoxidase, lactoferrin, the highly cationic proteinases elastase and cathepsins, PLA2, and certain synthetic polyamino acids. The cationic agents probably function by deregulating lipoteichoic acid (LTA) in Gram-positive bacteria and phospholipids in Gram-negative bacteria, the presumed regulators of the autolytic enzyme systems (muramidases). When bacteriolysis occurs in vivo, cell-wall- and -membrane-associated lipopolysaccharide (LPS (endotoxin)), lipoteichoic acid (LTA) and peptidoglycan (PPG), are released. These highly phlogistic agents can act on macrophages, either individually or in synergy, to induce the generation and release of reactive oxygen and nitrogen species, cytotoxic cytokines, hydrolases, proteinases, and also to activate the coagulation and complement cascades. All these agents and processes are involved in the pathophysiology of septic shock and multiple organ failure resulting from severe microbial infections. Bacteriolysis induced in in vitro models, either by polycations or by beta-lactams, could be effectively inhibited by sulfated polysaccharides, by D-amino acids as well as by certain anti-bacteriolytic antibiotics. However, within phagocytic cells in inflammatory sites, bacteriolysis tends to be strongly inhibited presumably due to the inactivation by oxidants and proteinases of the bacterial muramidases. This might results in a long persistence of non-biodegradable cell-wall components causing granulomatous inflammation. However, persistence of microbial cell walls in vivo may also boost innate immunity against infections and against tumor-cell proliferation. Therapeutic strategies to cope with the deleterious effects of bacteriolysis in vivo include combinations of autolysin inhibitors with combinations of certain anti-inflammatory agents. These might inhibit the synergistic tissue- and- organ-damaging "cross talks" which lead to septic shock and to additional post-infectious sequelae. [source] Structure of the heterodimeric neurotoxic complex viperotoxin F (RV-4/RV-7) from the venom of Vipera russelli formosensis at 1.9,Å resolutionACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2003Markus Perbandt The presynaptic viperotoxin F is the major lethal component of the venom of Vipera russelli formosensis (Taiwan viper). It is a heterodimer of two highly homologous (65% identity) but oppositely charged subunits: a basic and neurotoxic PLA2 (RV-4) and an acidic non-toxic component with a very low enzymatic activity (RV-7). The crystal structure of the complex has been determined by molecular replacement and refined to 1.9,Å resolution and an R factor of 22.3% with four RV-4/RV-7 complexes in the asymmetric unit, which do not exhibit any local point-group symmetry. The complex formation decreases the accessible surface area of the two subunits by ,1425,Å2. Both PLA2s are predicted to have very low, if any, anticoagulant activity. The structure of viperotoxin F is compared with that of the heterodimeric neurotoxin vipoxin from the venom of another viper, V. ammodytes meridionalis. The structural basis for the differences between the pharmacological activities of the two toxins is discussed. The neutralization of the negative charge of the major ligand for Ca2+, Asp49, by intersubunit salt bridges is probably a common mechanism of self-stabilization of heterodimeric Viperinae snake-venom neurotoxins in the absence of bound calcium. [source] Preliminary X-ray crystallographic studies of BthTX-II, a myotoxic Asp49-phospholipase A2 with low catalytic activity from Bothrops jararacussu venomACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2006L. C. Corrêa For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A2 (Asp49-PLA2) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA2s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA2 from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA2s. [source] Structure of myotoxin II, a catalytically inactive Lys49 phospholipase A2 homologue from Atropoides nummifer venomACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 5 2006Mário T. Murakami Lys49 snake-venom phospholipase A2 (PLA2) homologues are highly myotoxic proteins which, although lacking catalytic activity, possess the ability to disrupt biological membranes, inducing significant muscle-tissue loss and permanent disability in severely envenomed patients. Since the structural basis for their toxic activity is still only partially understood, the structure of myotoxin II, a monomeric Lys49 PLA2 homologue from Atropoides nummifer, has been determined at 2.08,Å resolution and the anion-binding site has been characterized. [source] |