Home About us Contact | |||
Plumbing System (plumbing + system)
Selected AbstractsAnalytical and 3-D numerical modelling of Mt. Etna (Italy) volcano inflationGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2005A. Bonaccorso SUMMARY Since 1993, geodetic data obtained by different techniques (GPS, EDM, SAR, levelling) have detected a consistent inflation of the Mt. Etna volcano. The inflation, culminating with the 1998,2001 strong explosive activity from summit craters and recent 2001 and 2002 flank eruptions, is interpreted in terms of magma ascent and refilling of the volcanic plumbing system and reservoirs. We have modelled the 1993,1997 EDM and GPS data by 3-D pressurized sources to infer the position and dimension of the magma reservoir. We have performed analytical inversions of the observed deformation using both spheroidal and ellipsoidal sources embedded in a homogeneous elastic half-space and by applying different inversion methods. Solutions for these types of sources show evidence of a vertically elongated magma reservoir located 6 km beneath the summit craters. The maximum elevation of topography is comparable to such depth and strong heterogeneities are inferred from seismic tomography; in order to assess their importance, further 3-D numerical models, employing source parameters extracted from analytical models, have been developed using the finite-element technique. The deformation predicted by all the models considered shows a general agreement with the 1993,1997 data, suggesting the primary role of a pressure source, while the complexities of the medium play a minor role under elastic conditions. However, major discrepancies between data and models are located in the SE sector, suggesting that sliding along potential detachment surfaces may contribute to amplify deformation during the inflation. For the first time realistic features of Mt. Etna are studied by a 3-D numerical model characterized by the topography and lateral variations of elastic structure, providing a framework for a deeper insight into the relationships between internal sources and tectonic structures. [source] Effect of flow regimes on the presence of Legionella within the biofilm of a model plumbing systemJOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2006Z. Liu Abstract Aims:, Stagnation is widely believed to predispose water systems to colonization by Legionella. A model plumbing system was constructed to determine the effect of flow regimes on the presence of Legionella within microbial biofilms. Methods and Results:, The plumbing model contained three parallel pipes where turbulent, laminar and stagnant flow regimes were established. Four sets of experiments were carried out with Reynolds number from 10 000 to 40 000 and from 355 to 2000 in turbulent and laminar pipes, respectively. Legionella counts recovered from biofilm and planktonic water samples of the three sampling pipes were compared with to determine the effect of flow regime on the presence of Legionella. Significantly higher colony counts of Legionella were recovered from the biofilm of the pipe with turbulent flow compared with the pipe with laminar flow. The lowest counts were in the pipe with stagnant flow. Conclusions:, We were unable to demonstrate that stagnant conditions promoted Legionella colonization. Significance and Impact of the Study:, Plumbing modifications to remove areas of stagnation including deadlegs are widely recommended, but these modifications are tedious and expensive to perform. Controlled studies in large buildings are needed to validate this unproved hypothesis. [source] A REVIEW OF GEOLOGICAL DATA THAT CONFLICT WITH THE PARADIGM OF CATAGENIC GENERATION AND MIGRATION OF OILJOURNAL OF PETROLEUM GEOLOGY, Issue 3 2005H. Hugh Wilson The majority of petroleum geologists today agree that the complex problems that surround the origin, generation, migration and accumulation of hydrocarbons can be resolved by accepting the geochemical conclusion that the process originates by catagenic generation in deeply-buried organically-rich source rocks. These limited source rock intervals are believed to expel hydrocarbons when they reach organic maturity in oil kitchens. The expelled oil and gas then follow migration pathways to traps at shallower levels. However, there are major geological obstacles that cast doubt upon this interpretation. The restriction of the source rock to a few organically rich levels in a basin forces the conclusion that the basin plumbing system is leaky and allows secondary horizontal and vertical migration through great thicknesses of consolidated sedimentary rocks in which there are numerous permeability barriers that are known to effectively prevent hydrocarbon escape from traps. The sourcing of lenticular traps points to the enclosing impermeable envelope as the logical origin of the trapped hydrocarbons. The lynch-pin of the catagenic theory of hydrocarbon origin is the expulsion mechanism from deeply-buried consolidated source rock under high confining pressures. This mechanism is not understood and is termed an "enigma". Assuming that expulsion does occur, the pathways taken by the hydrocarbons to waiting traps can be ascertained by computer modelling of the basin. However, subsurface and field geological support for purported migration pathways has yet to be provided. Many oilfield studies have shown that oil and gas are preferentially trapped in synchronous highs that were formed during, or very shortly after, the deposition of the charged reservoir. An unresolved problem is how catagenically generated hydrocarbons, expelled during a long-drawn-out maturation period, can have filled synchronous highs but have avoided later traps along the assumed migration pathways. From many oilfield studies, it has also been shown that the presence of hydrocarbons inhibits diagenesis and compaction of the reservoir rock. This "Füchtbauer effect" points to not only the early charging of clastic and carbonate reservoirs, but also to the development of permeability barriers below the early-formed accumulations. These barriers would prevent later hydrocarbon additions during the supposed extended period of expulsion from an oil kitchen. Early-formed traps that have been sealed diagenetically will retain their charge even if the trap is opened by later structural tilting. Diagenetic traps have been discovered in clastic and carbonate provinces but their recognition as viable exploration targets is discouraged by present-day assumptions of late hydrocarbon generation and a leaky basin plumbing system. Because there are so many geological realities that cast doubt upon the assumptions that devolve from the paradigm of catagenic generation, the alternative concept of early biogenic generation and accumulation of immature oil, with in-reservoir cracking during burial, is again worthy of serious consideration. This concept envisages hydrocarbon generation by bacterial activity in many anoxic environments and the charging of synchronous highs from adjacent sources. The resolution of the fundamental problem of hydrocarbon generation and accumulation, which is critical to exploration strategies, should be sought in the light of a thorough knowledge of the geologic factors involved, rather than by computer modelling which may be guided by questionable geochemical assumptions. [source] |