Pleistocene Period (pleistocene + period)

Distribution by Scientific Domains


Selected Abstracts


Palaeomonsoon variability in the southern fringe of the Badain Jaran Desert, China, since 130 ka BP

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2006
Quanzhou Gao
Abstract Taking the Chagelebulu Stratigraphic Profile as a typical example, a comprehensive study has been conducted to elucidate the palaeoclimatic and geomorphic evolution patterns in the southern fringe of the Badain Jaran Desert, which were found to be complex and polycyclic in the past 130 ka. However, the fluctuating magnitude is not as remarkable as that in the eastern China sandy region. The shift in climate from interglacial to glacial and the uplift process of the Qinghai,Xizang Plateau are the two leading forces driving the evolution of the climate and desert landforms in this area. Seventeen cycles of cold, dry and warm, humid climatic stages were recognized in the Upper Pleistocene Series of the profile. The sharp uplift of the Qinghai,Xizang Plateau superimposed a cool and arid climatic trend in this area. As a result of the climatic changes, the desert in this area has undergone multiple stages of expansion and contraction since 130 ka bp. The middle Holocene Epoch and the early stage of the Late Pleistocene Period were the main periods when the sand dunes became stabilized, and the early and late phases of the Holocene Epoch and late phase of the Pleistocene Epoch were the main periods when the previously stabilized sand dunes became mobile. The late phase of the Pleistocene Epoch was the most mobile stage, when the aeolian sand activities formed the essential geomorphic pattern of the Badain Jaran Desert. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Upper Pleistocene-Holocene geomorphic changes dictating sedimentation rates and historical land use in the valley system of the Chifeng region, Inner Mongolia, northern China

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2010
Y. Avni
Abstract This study focuses on the late Quaternary landscape evolution in the Chifeng region of Inner Mongolia, China, its relations to the history of the Pleistocene-Holocene loess accumulation, erosion and redeposition, and their impact on human occupation. Based on 57 optically stimulated luminescence (OSL) ages of loess sediments, fluvial sand and floodplain deposits accumulated on the hill slopes and floodplains, we conclude that during most of the Pleistocene period the region was blanketed by a thick layer of aeolian loess, as well as by alluvial and fluvial deposits. The loess section is divided into two main units that are separated by unconformity. The OSL ages at the top of the lower reddish loess unit yielded an approximate age of 193,ka, roughly corresponding to the transition from MIS 7 to 6, though they could be older. The upper gray loess unit accumulated during the upper Pleistocene glacial phase (MIS 4,3) at a mean accumulation rate of 0·22,m/ka. Parallel to the loess accumulation on top of the hilly topography, active fans were operating during MIS 4,2 at the outlet of large gullies surrounding the major valley at a mean accumulation rate of 0·24,m/ka. This co-accumulation indicates that gullies have been a long-term geomorphic feature at the margins of the Gobi Desert since at least the middle Pleistocene. During the Holocene, the erosion of the Pleistocene loess on the hills led to the burial of the valley floors by the redeposited sediments at a rate that decreases from 3·2,m/ka near the hills to 1,0·4,m/ka1 in the central part of the Chifeng Valley. This rapid accumulation and the frequent shifts of the courses of the river prevented the construction of permanent settlements in the valley floors, a situation which changed only with improved man-made control of the local rivers from the tenth century AD. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes,

JOURNAL OF QUATERNARY SCIENCE, Issue 3 2008
Holger Niemann
Abstract In order to study the stability and dynamics of mountain rainforest and paramo ecosystems, including the biodiversity of these ecosystems, the Holocene and late Pleistocene climate and fire variability, and human impact in the southeastern Ecuadorian Andes, we present a high-resolution pollen record from El Tiro Pass (2810,m elevation), Podocarpus National Park. Palaeoenvironmental changes, investigated by pollen, spores and charcoal analysis, inferred from a 127,cm long core spanning the last ca. 21,000,cal. yr BP, indicate that grass-paramo was the main vegetation type at the El Tiro Pass during the late Pleistocene period. The grass-paramo was rich in Poaceae, Plantago rigida and Plantago australis, reflecting cold and moist climatic conditions. During the early Holocene, from 11,200 to 8900,cal. yr BP, subparamo and upper mountain rainforest vegetation expanded slightly, indicating a slow warming of climatic conditions during this period. From 8900 to 3300,cal. yr BP an upper mountain rainforest developed at the study site, indicated by an increase in Hedyosmun, Podocarpaceae, Myrsine and Ilex. This suggests a warmer climate than the present day at this elevation. The modern subparamo vegetation became established since 3300,cal. yr BP at El Tiro Pass. Fires, probably anthropogenic origin, were very rare during the late Pleistocene but became frequent after 8000,cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Late Cenozoic Geomorphology, Geochronology and Physiography of Yuntaishan in Southern Taihang Mountain, North China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Zhonghai WU
Abstract: The late Cenozoic geomorphic features and geochronologic data of the Zhingfang River catchment in the Yuntaishan World Geopark are studied. Several quarternary geochronologic methods, including electron spin resonance (ESR), optically stimulated luminescence (OSL), thermo-luminescence (TL) and U-series are presented in this paper. The results suggest that there are two planation surfaces, named as the Taihang surface which is a peneplain of Taihang stage formed during Oligocene or Oligocene to early-middle Miocene period, and Tang-hien surface which is a mature wide valley of Tang-hien stage formed during late Miocene-Pliocene or Pliocene-early Pleistocene period and probably ended prior to 2.2,2.6 Ma based on ESR dating. After the Tang-hien stage, the incision and aggradation of the river formed six stream terraces with heights of 3,5 m, 8,12 m, 22,24 m, 28,38 m, 50,62 m and 80,85 m above the river bottom, respectively. The dating results of the alluvium sediments suggest that these terraces were formed during Holocene, 20,23 ka B.P., 110,120 ka B.P., 200,240 ka B.P., 840,1200 ka B.P. or ,450 ka B.P. and 1600,1800 ka B.P. or ,1100 ka B.P., respectively. These results indicate that episodic incision of the river, which controls the formation of the scenery in the Yuntaishan World Geopark, was mainly influenced by the periodic dry-wet climate change during late Cenozoic mountain uplift. [source]