Pleiotropic Phenotypes (pleiotropic + phenotype)

Distribution by Scientific Domains


Selected Abstracts


Pleiotropic phenotypes caused by an opal nonsense mutation in an essential gene encoding HMG-CoA reductase in fission yeast

GENES TO CELLS, Issue 6 2009
Yue Fang
Schizosaccharomyces pombe genome contains an essential gene hmg1+ encoding the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Here, we isolated an allele of the hmg1+ gene, hmg1-1/its12, as a mutant that showed sensitivities to high temperature and to FK506, a calcineurin inhibitor. The hmg1-1 allele contained an opal nonsense mutation in its N-terminal transmembrane domain, yet in spite of the mutation a full-length protein was produced, suggesting a read-through termination codon. Consistently, overexpression of the hmg1-1 mutant gene suppressed the mutant phenotypes. The hmg1-1 mutant showed hypersensitivity to pravastatin, an HMGR inhibitor, suggesting a defective HMGR activity. The mutant treated with FK506 caused dramatic morphological changes and showed defects in cell wall integrity, as well as displayed synthetic growth phenotypes with the mutant alleles of genes involved in cytokinesis and cell wall integrity. The mutant exhibited different phenotypes from those of the disruption mutants of ergosterol biosynthesis genes, and it showed normal filipin staining as well as showed normal subcellular localization of small GTPases. These data suggest that the pleiotropic phenotypes reflect the integrated effects of the reduced availability of ergosterol and various intermediates of the mevalonate pathway. [source]


AXL and AXR1 have redundant functions in RUB conjugation and growth and development in Arabidopsis

THE PLANT JOURNAL, Issue 1 2007
Nihal Dharmasiri
Summary Cullin-RING ubiquitin-protein ligases such as the Skp1, cullin, F-box protein (SCF) have been implicated in many growth and developmental processes in plants. Normal SCF function requires that the CUL1 subunit be post-translationally modified by related to ubiquitin (RUB), a protein related to ubiquitin. This process is mediated by two enzymes: the RUB-activating and RUB-conjugating enzymes. In Arabidopsis, the RUB-activating enzyme is a heterodimer consisting of AXR1 and ECR1. Mutations in the AXR1 gene result in a pleiotropic phenotype that includes resistance to the plant hormone auxin. Here we report that the AXL (AXR1-like) gene also functions in the RUB conjugation pathway. Overexpression of AXL in the axr1-3 background complements the axr1-3 phenotype. Biochemical analysis indicates that AXL overexpression restores CUL1 modification to the wild-type level, indicating that AXR1 and AXL have the same biochemical activity. Although the axl mutant resembles wild-type plants, the majority of axr1 axl-1 double mutants are embryo or seedling lethal. Furthermore, the axl-1 mutation reveals novel RUB-dependent processes in embryo development. We conclude that AXR1 and AXL function redundantly in the RUB conjugating pathway. [source]


A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2009
Mi-Sun Kim
Sedoheptulose-7-phosphate isomerase (GmhA) converts d -sedoheptulose 7-phosphate to d,d -heptose 7-phosphate. This is the first step in the biosynthesis pathway of NDP-heptose, which is responsible for the pleiotropic phenotype. This biosynthesis pathway is the target of inhibitors to increase the membrane permeability of Gram-negative pathogens or of adjuvants working synergistically with known antibiotics. Burkholderia pseudomallei is the causative agent of melioidosis, a seriously invasive disease in animals and humans in tropical and subtropical areas. GmhA from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 1.9,Å resolution. The crystal belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a = 61.3, b = 84.2, c = 142.3,Å. A full structural determination is under way in order to provide insights into the structure,function relationships of this protein. [source]


Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis

FEBS JOURNAL, Issue 3 2010
Antony S. Fatimababy
The recognition of ubiquitylated substrates is an essential element of ubiquitin/26S proteasome-mediated proteolysis (UPP), which is mediated directly by the proteasome subunit RPN10 and/or RPN13, or indirectly by ubiquitin receptors containing ubiquitin-like and ubiquitin-associated domains. By pull-down and mutagenesis assays, we detected cross-species divergence of the major recognition pathways. RPN10 plays a major role in direct recognition in Arabidopsis and yeast based on the strong affinity for the long and K48-linked ubiquitin chains. In contrast, both the RPN10 and RPN13 homologs play major roles in humans. For indirect recognition, the RAD23 and DSK2 homologs (except for the human DSK2 homolog) are major receptors. The human RAD23 homolog is targeted to the 26S proteasome by the RPN10 and RPN13 homologs. In comparison, Arabidopsis uses UIM1 and UIM3 of RPN10 to bind DSK2 and RAD23, respectively. Yeast uses UIM in RPN10 and LRR in RPN1. Overall, multiple proteasome subunits are responsible for the direct and/or indirect recognition of ubiquitylated substrates in yeast and humans. In contrast, a single proteasome subunit, RPN10, is critical for both the direct and indirect recognition pathways in Arabidopsis. In agreement with these results, the accumulation of ubiquitylated substrates and severe pleiotropic phenotypes of vegetative and reproductive growth are associated with the loss of RPN10 function in an Arabidopsis T-DNA insertion mutant. This implies that the targeting and proteolysis of the critical regulators involved are affected. These results support a cross-species mechanistic and functional divergence of the major recognition pathways for ubiquitylated substrates of UPP. Structured digital abstract ,,A list of the large number of protein-protein interactions described in this article is available via the MINT article ID MINT-7307429 [source]


Pleiotropic phenotypes caused by an opal nonsense mutation in an essential gene encoding HMG-CoA reductase in fission yeast

GENES TO CELLS, Issue 6 2009
Yue Fang
Schizosaccharomyces pombe genome contains an essential gene hmg1+ encoding the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Here, we isolated an allele of the hmg1+ gene, hmg1-1/its12, as a mutant that showed sensitivities to high temperature and to FK506, a calcineurin inhibitor. The hmg1-1 allele contained an opal nonsense mutation in its N-terminal transmembrane domain, yet in spite of the mutation a full-length protein was produced, suggesting a read-through termination codon. Consistently, overexpression of the hmg1-1 mutant gene suppressed the mutant phenotypes. The hmg1-1 mutant showed hypersensitivity to pravastatin, an HMGR inhibitor, suggesting a defective HMGR activity. The mutant treated with FK506 caused dramatic morphological changes and showed defects in cell wall integrity, as well as displayed synthetic growth phenotypes with the mutant alleles of genes involved in cytokinesis and cell wall integrity. The mutant exhibited different phenotypes from those of the disruption mutants of ergosterol biosynthesis genes, and it showed normal filipin staining as well as showed normal subcellular localization of small GTPases. These data suggest that the pleiotropic phenotypes reflect the integrated effects of the reduced availability of ergosterol and various intermediates of the mevalonate pathway. [source]


A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy

GENES, BRAIN AND BEHAVIOR, Issue 7 2009
H. Suzuki
The lde/lde rat is characterized by dwarfism, postnatal lethality, male hypogonadism, a high incidence of epilepsy and many vacuoles in the hippocampus and amygdala. We used a candidate approach to identify the gene responsible for the lde phenotype and assessed the susceptibility of lde/lde rats for audiogenic seizures. Following backcross breeding of lethal dwarfism with epilepsy (LDE) to Brown Norway rats, the lde/lde rats with an altered genetic background showed all pleiotropic phenotypes. The lde locus was mapped to a 1.5-Mbp region on rat chromosome 19 that included the latter half of the Wwox gene. Sequencing of the full-length Wwox transcript identified a 13-bp deletion in exon 9 in lde/lde rats. This mutation causes a frame shift, resulting in aberrant amino acid sequences at the C-terminal. Western blotting showed that both the full-length products of the Wwox gene and its isoform were present in normal testes and hippocampi, whereas both products were undetectable in the testes and hippocampi of lde/lde rats. Sound stimulation induced epileptic seizures in 95% of lde/lde rats, with starting as wild running (WR), sometimes progressing to tonic,clonic convulsions. Electroencephalogram (EEG) analysis showed interictal spikes, fast waves during WR and burst of spikes during clonic phases. The Wwox protein is expressed in the central nervous system (CNS), indicating that abnormal neuronal excitability in lde/lde rats may be because of a lack of Wwox function. The lde/lde rat is not only useful for understanding the multiple functions of Wwox but is also a unique model for studying the physiological function of Wwox in CNS. [source]


Homozygous microdeletion of chromosome 4q11-q12 causes severe limb-girdle muscular dystrophy type 2E with joint hyperlaxity and contractures,,

HUMAN MUTATION, Issue 3 2005
Angela M. Kaindl
Abstract Microdeletion syndromes are commonly transmitted as dominant traits and are frequently associated with variably expressed pleiotropic phenotypes. Nonlethal homozygous microdeletions, on the other hand, are very rare. Here, we delineate the fifth and so far largest homozygous microdeletion in nonmalignancies of approximately 400 kb on chromosome 4q11-q12 in a large consanguineous East-Anatolian family with six affected patients. The deleted region contains the beta-sarcoglycan gene (SGCB), the predicted gene SPATA18 (spermatogenesis associated 18 homolog) and several expressed sequence tags. Patients presented with a severe and progressive Duchenne-like muscular dystrophy phenotype, a combination of hyperlaxity and joint contractures, chest pain, palpitations, and dyspnea. © 2005 Wiley-Liss, Inc. [source]


Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis

THE PLANT JOURNAL, Issue 5 2009
Anthony L. Schilmiller
Summary The initial reactions of the phenylpropanoid pathway convert phenylalanine to p -coumaroyl CoA, a branch point metabolite from which many phenylpropanoids are made. Although the second enzyme of this pathway, cinnamic acid 4-hydroxylase (C4H), is well characterized, a mutant for the gene encoding this enzyme has not yet, to our knowledge, been identified, presumably because knock-out mutations in this gene would have severe phenotypes. This work describes the characterization of an allelic series of Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, each of which harbor mis-sense mutations in C4H (At2g30490). Heterologous expression of the mutant proteins in Escherichia coli yields enzymes that exhibit P420 spectra, indicative of mis-folded proteins, or have limited ability to bind substrate, indicating that the mutations we have identified affect protein stability and/or enzyme function. In agreement with the early position of C4H in phenylpropanoid metabolism, ref3 mutant plants accumulate decreased levels of several different classes of phenylpropanoid end-products, and exhibit reduced lignin deposition and altered lignin monomer content. Furthermore, these plants accumulate a novel hydroxycinnamic ester, cinnamoylmalate, which is not found in the wild type. The decreased C4H activity in ref3 also causes pleiotropic phenotypes, including dwarfism, male sterility and the development of swellings at branch junctions. Together, these observations indicate that C4H function is critical to the normal biochemistry and development of Arabidopsis. [source]


The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90

THE PLANT JOURNAL, Issue 1 2003
Dongsun Cao
Summary The cr88 mutant of Arabidopsis is a novel chlorate-resistant mutant that displays long hypocotyls in red light, but not in far red or blue light, and is delayed in the greening process. In cotyledons and young leaves, plastids are less developed compared with those of the wild type. In addition, a subset of light-regulated genes are under-expressed in this mutant. To understand the pleiotropic phenotypes of cr88, we isolated the CR88 gene through map-based cloning. We found that CR88 encodes a chloroplast-targeted 90-kDa heat shock protein (HSP90). The CR88 gene is expressed at highest levels during early post-germination stages and in leaves and reproductive organs. It is constitutively expressed but is also light and heat shock inducible. Chloroplast import experiments showed that the protein is localized to the stroma compartment of the chloroplast. The possible function of an HSP90 in the chloroplast and a plausible explanation of the pleiotropic phenotypes observed in cr88 are discussed. [source]