Pleiotropic Nature (pleiotropic + nature)

Distribution by Scientific Domains


Selected Abstracts


Absence of Gup1p in Saccharomyces cerevisiae results in defective cell wall composition, assembly, stability and morphology

FEMS YEAST RESEARCH, Issue 7 2006
Célia Ferreira
Abstract Saccharomyces cerevisiae Gup1p and its homologue Gup2p, members of the superfamily of membrane-bound O -acyl transferases, were previously associated with glycerol-mediated salt-stress recovery and glycerol symporter activity. Several other phenotypes suggested Gup1p involvement in processes connected with cell structure organization and biogenesis. The gup1, mutant is also thermosensitive and exhibits an altered plasma membrane lipid composition. The present work shows that the thermosensitivity is independent of glycerol production and retention. Furthermore, the mutant grows poorly on salt, ethanol and weak carboxylic acids, suggestive of a malfunctioning membrane potential. Additionally, gup1, is sensitive to cell wall-perturbing agents, such as Calcofluor white, Zymolyase, lyticase and sodium dodecyl sulphate and exhibits a sedimentation/aggregation phenotype. Quantitative analysis of cell wall components yielded increased contents of chitin and ,-1,3-glucans and lower amounts of mannoproteins. Consistently, scanning electron microscopy showed a strikingly rough surface morphology of the mutant cells. These results suggest that the gup1, is affected in cell wall assembly and stability, although the Slt2p/MAP kinase from the PKC pathway was phosphorylated during hypo-osmotic shock to a normal extent. Results emphasize the pleiotropic nature of gup1,, and are consistent with a role of Gulp1p in connection with several pathways for cell maintenance and construction/remodelling. [source]


Auxotrophic mutant of the cyanobacterium Nostoc muscorum showing absolute requirement of Cs+ or Rb+ for diazotrophy and autotrophy

JOURNAL OF BASIC MICROBIOLOGY, Issue 4 2006
Santosh Bhargava Dr.
Caesium-resistant (Cs+ -R) mutant clones of the cyanobacterium Nostoc muscorum were characterized for diazotrophic growth in a medium devoid of Cs+ or Rb+ or both. Cs+ -R phenotype suffered severe genetic damage of a pleiotropic nature affecting diazotrophic growth, chlorophyll a content, nitrogenase activity and photosynthetic O2 evolution. Mutation leading to development of Cs+ -R phenotype could be overcome by availability of Cs+/Rb+. Parent and mutant strains were similar with respect to their Cs+/Rb+ uptake. Available data suggests operation of an efficient coupling of the two incompatible reactions viz. oxygenic photosynthesis and oxygen sensitive N2 fixation in this cyanobacterium. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


FGF and FGFR signaling in chondrodysplasias and craniosynostosis

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2005
P.J. Marie
Abstract The first experimental mouse model for FGF2 in bone dysplasia was made serendipitously by overexpression of FGF from a constitutive promoter. The results were not widely accepted, rightfully drew skepticism, and were difficult to publish; because of over 2,000 studies published on FGF-2 at the time (1993), only a few reported a role of FGF-2 in bone growth and differentiation. However, mapping of human dwarfisms to mutations of the FGFRs shortly, thereafter, made the case that bone growth and remodeling was a major physiological function for FGF. Subsequent production of numerous transgenic and targeted null mice for several genes in the bone growth and remodeling pathways have marvelously elucidated the role of FGFs and their interactions with other genes. Indeed, studies of the FGF pathway present one of the best success stories for use of experimental genetics in functionally parsing morphogenetic regulatory pathways. What remains largely unresolved is the pleiotropic nature of FGF-2. How does it accelerate growth in one cell then stimulate apoptosis or retard growth for another cell in the same type of tissue? Some of the answers may come through distinguishing the FGF-2 protein isoforms, made from alternative translation start sites, these appear to have substantially different functions. Although we have made substantial progress, there is still much to be learned regarding FGF-2 as a most complex, enigmatic protein. Studies of genetic models in mice and human FGFR mutations have provided strong evidence that FGFRs are important modulators of osteoblast function during membranous bone formation. However, there is some controversy regarding the effects of FGFR signaling in human and murine genetic models. Although significant progress has been made in our understanding of FGFR signaling, several questions remain concerning the signaling pathways involved in osteoblast regulation by activated FGFR. Additionally, little is known about the specific role of FGFR target genes involved in cranial bone formation. These issues need to be addressed in future in in vitro and in vivo approaches to better understand the molecular mechanisms of action of FGFR signaling in osteoblasts that result in anabolic effects in bone formation. J. Cell. Biochem. © 2005 Wiley-Liss, Inc. [source]


Leptin leads hypothalamic feeding circuits in a new direction

BIOESSAYS, Issue 10 2004
Joanne A. Harrold
A decade ago, leptin (from the greek lepto meaning ,thin') was identified as the product of the ob gene.1 This adipocyte-derived hormone was found to suppress feeding and stimulate thermogenesis, and was thus proposed as a mediator in a negative feedback loop that controls body adiposity. This discovery led to a rapid revolution in the understanding of neurobiological mechanisms regulating obesity. However, while leptin's first life was as an adipostat, it is now known to have a wide range of additional neuroendocrine, metabolic and behavioural functions in the CNS and periphery. Remarkably, the pleiotropic nature of the hormone continues to be extended with the recent publication of two papers that expand on leptin's neurobiological actions in the CNS.2,3 They indicate novel regulatory roles for the hormone in both synaptic plasticity and axon guidance. Crucially, in light of the rising incidence of obesity in modern society, both of the studies reveal leptin-mediated links between nutrition and neurodevelopment, findings that have further implications for leptin's role in the regulation of energy homeostasis. BioEssays 26:1043,1045, 2004. © 2004 Wiley Periodicals, Inc. [source]