Astrocyte Response (astrocyte + response)

Distribution by Scientific Domains


Selected Abstracts


D2 Dopamine receptor blockade results in sprouting of DA axons in the intact animal but prevents sprouting following nigral lesions

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2003
W. Tripanichkul
Abstract Recently it was demonstrated that sprouting of dopaminergic neurons and a microglial and astrocyte response follows both partial lesions of the substantia nigra pars compacta and blockade of the D2 dopamine receptor. We therefore studied the effects of the combination of these two treatments (lesioning and D2 dopamine receptor blockade). Haloperidol administration caused a 57% increase in dopaminergic terminal tree size (measured as terminal density per substantia nigra pars compacta neuron) and an increase of glia in the striatum. Following small to medium nigral lesions (less than 60%), terminal tree size increased by 51% on average and returned density of dopaminergic terminals to normal. In contrast, administration of haloperidol for 16 weeks following lesioning resulted in reduced dopaminergic terminal density and terminal tree size (13%), consistent with absent or impaired sprouting. Glial cell numbers increased but were less than with lesions alone. When haloperidol was administered after the striatum had been reinnervated through sprouting (16,32 weeks after lesioning), terminal tree size increased up to 150%, similar to the effect of haloperidol in normal animals. By examining the effect of administering haloperidol at varying times following a lesion, we concluded that a switch in the effect of D2 dopamine receptor blockade occurred after dopaminergic synapses began to form in the striatum. We postulate that when synapses are present, D2 dopamine receptor blockade results in increased terminal density, whereas prior to synapse formation D2 dopamine receptor blockade causes attenuation of a sprouting response. We speculate that D2 dopamine receptors located on growth cones ,push' neurites toward their targets, and blockade of these receptors could lead to attenuation of sprouting. [source]


In the hypoxic central nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and increased expression of the ,6,4 integrin and dystroglycan

GLIA, Issue 10 2010
Longxuan Li
Abstract Cerebral hypoxia induces a profound angiogenic response in the central nervous system (CNS). Using a mouse model of chronic cerebral hypoxia, we previously demonstrated that angiogenic vessels in the hypoxic CNS show marked upregulation of the extracellular matrix (ECM) protein fibronectin, along with increased expression of its major receptor, ,5,1 integrin on brain endothelial cells (BEC). As cerebral hypoxia also leads to glial activation, the aim of the current study was to define the temporal relationship between BEC responses and glial cell activation in this model of cerebral hypoxia. This revealed that BEC fibronectin/,5,1 integrin expression and proliferation both reached maximal level after 4-day hypoxia. Interestingly, up to 4-day hypoxia, all dividing cells were BEC, but at later time-points proliferating astrocytes were also observed. GFAP staining revealed that hypoxia induced marked astrocyte activation that reached maximal level between 7- and 14-day hypoxia. As newly formed cerebral capillaries require ensheathment by astrocyte end-feet to acquire mature brain endothelium characteristics, we next examined how expression of astrocyte end-feet adhesion molecules is regulated by hypoxia. This showed that the astrocyte adhesion receptors ,6,4 integrin and dystroglycan were both markedly upregulated, with a time-course that closely resembled astrocyte activation. Taken together, this evidence shows that cerebral hypoxia promotes first an endothelial response, in which fibronectin promotes BEC proliferation. This is then followed by an astrocyte response, involving astrocyte activation, proliferation, and reorganization of astrocyte end-feet, which correlates with increased expression of astrocyte end-feet adhesion molecules. © 2010 Wiley-Liss, Inc. [source]


Astrocyte-derived factors modulate the inhibitory effect of ethanol on dendritic development

GLIA, Issue 4 2002
Penelope A. Yanni
Abstract Numerous studies in vivo and in vitro have demonstrated that ethanol disrupts neuromorphogenesis. However, it has not been determined what role, if any, is played by non-neuronal cells in mediating this effect. We recently reported that ethanol inhibits dendritic development in low-density cultures of fetal rat hippocampal pyramidal neurons (Yanni and Lindsley, 2000: Dev Brain Res 120:233,243). In this culture system, cortical astrocytes precondition neuronal culture media for 2 days before the addition of neurons, which then develop on a separate substrate in coculture with the astrocytes. To determine whether astrocyte response to ethanol mediates the effects of ethanol on neurons, the present study compared dendritic development of neurons after 6 days in medium containing 400 mg/dl ethanol in coculture with live astrocytes and in conditioned medium from astrocytes that were never exposed to ethanol. The same experiment was also performed with and without ethanol present during astrocyte preconditioning of the medium. The effects of ethanol differed depending on when it was added to the cultures relative to addition of newly dissociated neurons. However, the effects of ethanol were not related to whether neurons were cocultured with live astrocytes. When astrocytes preconditioned the medium normally, ethanol added at plating inhibited dendritic development of neurons regardless of whether they were maintained in coculture with live astrocytes or in conditioned medium. In surprising contrast, the presence of ethanol during astrocyte preconditioning of the media had a growth promoting effect on subsequent dendrite development despite the continued presence of ethanol in the medium. Thus, astrocytes release soluble factors in response to ethanol that can protect neurons from the inhibitory effects of ethanol on dendritic growth, but the timing of neuronal exposure to these factors, or their concentration, may influence their activity. GLIA 38:292,302, 2002. © 2002 Wiley-Liss, Inc. [source]


DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2009
P.F. Durrenberger
Abstract DnaJ/Hsp40 chaperones determine the activity of Hsp70s by stabilizing their interaction with substrate proteins. We have predicted, based on the in silico analysis of a brain-derived whole-genome transcriptome data set, an increased expression of DnaJ/Hsp40 homologue, subfamily B, member 6 (DnaJB6) in Parkinson's disease (PD; Moran et al. [2006] Neurogenetics 7:1,11). We now show that DnaJB6 is a novel component of Lewy bodies (LBs) in both PD substantia nigra and PD cortex and that it is strongly up-regulated in parkinsonian astrocytes. The presence of DnaJB6 in the center of LBs suggests an early and direct involvement of this chaperone in the neuronal disease process associated with PD. The strong concomitant expression of DnaJB6 in astrocytes emphasizes the involvement of glial cells in PD and could indicate a route for therapeutic intervention. Extracellular alpha-synuclein originating from intravesicular alpha-synuclein is prone to aggregation and the potential source of extracellular aggregates (Lee [2008] J. Mol. Neurosci. 34:17,22). The observed strong expression of DnaJB6 by astrocytes could reflect a protective reaction, so reducing the neuronal release of toxic alpha-synuclein and supporting the astrocyte response in PD might limit the progression of the disease process. © 2008 Wiley-Liss, Inc. [source]


Nuclear factor-,b activation is associated with glutamate-evoked tissue transglutaminase up-regulation in primary astrocyte cultures

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005
Daniela Caccamo
Abstract We have previously demonstrated that alterations of cell redox state, evoked by glutamate, are associated with tissue transglutaminase increases in primary astrocyte cultures. Furthermore, glutamate exposure activated the nuclear factor (NF)-,B pathway, and its effects were significantly reduced by antioxidants. Here, we investigated the possible involvement of activated NF-,B pathway in glutamate-evoked tissue transglutaminase up-regulation in primary astrocytes. The presence of DNA binding activity by NF-,B in nuclear extracts of astrocytes, treated for 24 hr with glutamate (500 ,M) or untreated, was assessed by EMSA, using an oligonucleotide probe containing the NF-,B consensus sequence present in the tissue transglutaminase promoter. Supershifting with monoclonal antibodies revealed that activated NF-,B dimer complexes were composed of p50 and p65 subunits. Interestingly, the specific NF-,B inhibitor SN50 (but not its inactive analogue SN50M), when added to cell cultures 30 min prior to glutamate treatment, was able gradually to reduce glutamate-induced NF-,B activation. Western blot analysis confirmed the reduction of the p50 amount in nuclear extracts. Notably, the preincubation with SN50 also diminished glutamate-increased tissue transglutaminase expression, as showed by both RT-PCR and Western blotting. Competition experiments, carried out with an excess of a probe containing the NF-,B consensus sequence present in the ,-light-chain promoter, demonstrated a preferential binding of the tissue transglutaminase specific NF-,B probe in the nuclear extracts of glutamate-treated astrocytes compared with untreated astrocytes. These preliminary data suggest that NF-,B activation, which has been demonstrated to be involved in astrocyte response to glutamate, could also be associated with the molecular pathway leading to glutamate-evoked tissue transglutaminase up-regulation. © 2005 Wiley-Liss, Inc. [source]


Activation of CysLT receptors induces astrocyte proliferation and death after oxygen,glucose deprivation

GLIA, Issue 1 2008
Xiao-Jia Huang
Abstract We recently found that 5-lipoxygenase (5-LOX) is activated to produce cysteinyl leukotrienes (CysLTs), and CysLTs may cause neuronal injury and astrocytosis through activation of CysLT1 and CysLT2 receptors in the brain after focal cerebral ischemia. However, the property of astrocyte responses to in vitro ischemic injury is not clear; whether 5-LOX, CysLTs, and their receptors are also involved in the responses of ischemic astrocytes remains unknown. In the present study, we performed oxygen-glucose deprivation (OGD) followed by recovery to induce ischemic-like injury in the cultured rat astrocytes. We found that 1-h OGD did not injure astrocytes (sub-lethal OGD) but induced astrocyte proliferation 48 and 72 h after recovery; whereas 4-h OGD moderately injured the cells (moderate OGD) and led to death 24,72 h after recovery. Inhibition of phospholipase A2 and 5-LOX attenuated both the proliferation and death. Sub-lethal and moderate OGD enhanced the production of CysLTs that was inhibited by 5-LOX inhibitors. Sub-lethal OGD increased the expressions of CysLT1 receptor mRNA and protein, while moderate OGD induced the expression of CysLT2 receptor mRNA. Exogenously applied leukotriene D4 (LTD4) induced astrocyte proliferation at 1,10 nM and astrocyte death at 100,1,000 nM. The CysLT1 receptor antagonist montelukast attenuated astrocyte proliferation, the CysLT2 receptor antagonist BAY cysLT2 reversed astrocyte death, and the dual CysLT receptor antagonist BAY u9773 exhibited both effects. In addition, LTD4 (100 nM) increased the expression of CysLT2 receptor mRNA. Thus, in vitro ischemia activates astrocyte 5-LOX to produce CysLTs, and CysLTs result in CysLT1 receptor-mediated proliferation and CysLT2 receptor-mediated death. © 2007 Wiley-Liss, Inc. [source]


Potential mechanisms for astrocyte-TIMP-1 downregulation in chronic inflammatory diseases

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2006
Jessica Gardner
Abstract The pathogenesis of many neurodegenerative disorders, including human immunodeficiency virus (HIV)-1 associated dementia, is exacerbated by an imbalance between matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). In the context of disease, TIMP-1 has emerged as an important multifunctional protein capable of regulating inflammation. We previously reported differential TIMP-1 expression in acute versus chronic activation of astrocytes. This study investigates possible mechanisms underlying TIMP-1 downregulation in chronic neuroinflammation. We used interleukin (IL)-1, as a model pro-inflammatory stimulus and measured TIMP-1 binding to extracellular matrix, cell death, receptor downregulation, TIMP-1 mRNA stability and transcriptional regulation in activated astrocytes. TIMP-1 remained localized to the cell body or was secreted into the cell supernatant. DNA fragmentation ELISA and MTT assay showed that prolonged IL-1, activation of astrocytes induced significant astrocyte death. In acute and chronic IL-1,-activated astrocytes, IL-1 receptor levels were not significantly different. TIMP-1 mRNA stability was measured in astrocytes and U87 astroglioma cells by real-time PCR, and TIMP-1 promoter activation was studied using TIMP-1-luciferase reporter constructs in transfected astrocytes. Our results indicated that TIMP-1 expression is regulated through multiple mechanisms. Transcriptional control and loss of mRNA stabilization are, however, the most likely primary contributors to chronic downregulation of TIMP-1. These data are important for unraveling the mechanisms underlying astrocyte responses during chronic neuroinflammation and have broader implications in other inflammatory diseases that involve MMP/TIMP imbalance. © 2006 Wiley-Liss, Inc. [source]