Astrocytes

Distribution by Scientific Domains

Kinds of Astrocytes

  • activated astrocyte
  • brain astrocyte
  • cortical astrocyte
  • cultured astrocyte
  • cultured rat astrocyte
  • hippocampal astrocyte
  • human astrocyte
  • mature astrocyte
  • mouse astrocyte
  • normal astrocyte
  • positive astrocyte
  • primary astrocyte
  • rat astrocyte
  • rat cortical astrocyte
  • reactive astrocyte
  • striatal astrocyte

  • Terms modified by Astrocytes

  • astrocyte activation
  • astrocyte culture
  • astrocyte differentiation
  • astrocyte migration
  • astrocyte proliferation
  • astrocyte response
  • astrocyte swelling

  • Selected Abstracts


    Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia

    GLIA, Issue 9 2010
    Lijun Xu
    Abstract Brief forebrain ischemia is a model of the delayed hippocampal neuronal loss seen in patients following cardiac arrest and resuscitation. Previous studies demonstrated that selective dysfunction of hippocampal CA1 subregion astrocytes occurs hours to days before delayed neuronal death. In this study we tested the strategy of directing protection to astrocytes to protect neighboring neurons from forebrain ischemia. Two well-studied protective proteins, heat shock protein 72 (Hsp72) or superoxide dismutase 2 (SOD2), were genetically targeted for expression in astrocytes using the astrocyte-specific human glial fibrillary acidic protein (GFAP) promoter. The expression constructs were injected stereotacticly immediately above the hippocampal CA1 region on one side of the rat brain two days prior to forebrain ischemia. Cell type specific expression was confirmed by double label immunohistochemistry. When the expression constructs were injected two days before transient forebrain ischemia, the loss of CA1 hippocampal neurons observed seven days later was significantly reduced on the injected side compared with controls. This neuroprotection was associated with significantly better preservation of astrocyte glutamate transporter-1 immunoreactivity at 5-h reperfusion and reduced oxidative stress. Improving the resistance of astrocytes to ischemic stress by targeting either the cytosolic or mitochondrial compartment was thus associated with preservation of CA1 neurons following forebrain ischemia. Targeting astrocytes is a promising strategy for neuronal preservation following cardiac arrest and resuscitation. © 2010 Wiley-Liss, Inc. [source]


    Astrocyte and endothelial cell expression of ADAM 17 (TACE) in adult human CNS

    GLIA, Issue 4 2001
    Diane R. Goddard
    Abstract ADAM 17, also known as TACE, is an important sheddase for a number of proteins, including tumor necrosis factor-, (TNF-,), transforming growth factor-, (TGF-,), L-selectin, p75, and p55 TNF receptors, and interleukin-1 receptor II (IL-1RII). The presence of ADAM 17 mRNA in adult mouse and rat CNS was recently reported (Karkkainen et al. Mol Cell Neurosci 15:547,560, 2000). However, the cellular origin of ADAM 17 remains unknown. In this study, we have used an anti-ADAM 17 antibody in an immunohistochemical study of its distribution in human adult CNS tissue. Cells with astrocytic and endothelial morphology were ADAM 17-positive. This finding was further confirmed using double immunofluorescence with antibodies against GFAP and von Willebrand factor, which label astrocytes and endothelial cells, respectively. This study demonstrates that ADAM 17 is expressed by astrocytes and endothelial cells in normal brain tissue and may have a role in normal brain function. GLIA 34:267,271, 2001. © 2001 Wiley-Liss, Inc. [source]


    Pathogenesis of Lyme neuroborreliosis: Borrelia burgdorferi lipoproteins induce both proliferation and apoptosis in rhesus monkey astrocytes

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2003
    Geeta Ramesh
    Abstract Brain invasion by Borrelia burgdorferi, the agent of Lyme disease, results in an inflammatory and neurodegenerative disorder called neuroborreliosis. In humans, neuroborreliosis has been correlated with enhanced concentration of glial fibrillary acidic protein in the cerebrospinal fluid, a sign of astrogliosis. Rhesus monkeys infected by us with B.,burgdorferi showed evidence of astrogliosis, namely astrocyte proliferation and apoptosis. We formulated the hypothesis that astrogliosis could be caused by spirochetal lipoproteins. We established primary cultures of rhesus monkey astrocytes and stimulated the cells with recombinant lipidated outer surface protein,A (L-OspA), a model B.,burgdorferi lipoprotein, and tripalmitoyl-S-glyceryl-Cys-Ser-Lys4 -OH (Pam3Cys), a synthetic lipopeptide that mimics the structure of the lipoprotein lipid moiety. L-OspA elicited not only astrocyte proliferation but also apoptosis, two features observed during astrogliosis. Astrocytes produced both IL-6 and TNF-, in response to L-OspA and Pam3Cys. Proliferation induced by L-OspA was diminished in the presence of an excess of anti-IL-6 antibody, and apoptosis induced by this lipoprotein was completely suppressed with anti-TNF-, antibody. Hence, IL-6 contributes to, and TNF-, determines, astrocyte proliferation and apoptosis, respectively, as elicited by lipoproteins. Our results provide proof of the principle that spirochetal lipoproteins could be key virulence factors in Lyme neuroborreliosis, and that astrogliosis might contribute to neuroborreliosis pathogenesis. [source]


    Astrocytes promote neurogenesis from oligodendrocyte precursor cells

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006
    P. M. Gaughwin
    Abstract The oligodendrocyte precursor cell (OPC) has until recently been regarded as a lineage-restricted precursor cell. Considerable interest has been generated by reports suggesting that OPCs may possess a wider differentiation potential than previously assumed and thus be considered a multipotential stem cell. This study examined the neuronal differentiation potential of rat, postnatal cortical OPCs in response to extracellular cues in vitro and in vivo. OPCs did not exhibit intrinsic neuronal potential and were restricted to oligodendrocyte lineage potential following treatment with the neural precursor mitogen fibroblast growth factor 2. In contrast, a postnatal hippocampal astrocyte-derived signal(s) is sufficient to induce functional neuronal differentiation of cortical OPCs in vitro in population and single cell studies. Co-treatment with Noggin, a bone morphogenetic protein antagonist, did not attenuate neuronal differentiation. Following transplantation to the adult rat hippocampus, cortical OPCs expressed doublecortin, a neuroblast-associated marker. The present findings show that hippocampal, astrocyte-derived signals can induce the neuronal differentiation of OPCs through a Noggin-independent mechanism. [source]


    Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2000
    Stefan Hinterkeuser
    Abstract Functional properties of astrocytes were investigated with the patch-clamp technique in acute hippocampal brain slices obtained from surgical specimens of patients suffering from pharmaco-resistant temporal lobe epilepsy (TLE). In patients with significant neuronal cell loss, i.e. Ammon's horn sclerosis, the glial current patterns resembled properties characteristic of immature astrocytes in the murine or rat hippocampus. Depolarizing voltage steps activated delayed rectifier and transient K+ currents as well as tetrodotoxin-sensitive Na+ currents in all astrocytes analysed in the sclerotic human tissue. Hyperpolarizing voltages elicited inward rectifier currents that inactivated at membrane potentials negative to -130 mV. Comparative recordings were performed in astrocytes from patients with lesion-associated TLE that lacked significant histopathological hippocampal alterations. These cells displayed stronger inward rectification. To obtain a quantitative measure, current densities were calculated and the ratio of inward to outward K+ conductances was determined. Both values were significantly smaller in astrocytes from the sclerotic group compared with lesion-associated TLE. During normal development of rodent brain, astroglial inward rectification gradually increases. It thus appears reasonable to suggest that astrocytes in human sclerotic tissue return to an immature current pattern. Reduced astroglial inward rectification in conjunction with seizure-induced shrinkage of the extracellular space may lead to impaired spatial K+ buffering. This will result in stronger and prolonged depolarization of glial cells and neurons in response to activity-dependent K+ release, and may thus contribute to seizure generation in this particular condition of human TLE. [source]


    Existence and distinction of acid-evoked currents in rat astrocytes

    GLIA, Issue 12 2010
    Chao Huang
    Abstract Astrocytes are vital structures that support and/or protect neighboring neurons from pathology. Although it is generally accepted that glutamate receptors mediate most astrocyte effects, acid-evoked currents have recently attracted attention for their role in this regard. Here, we identified the existence and characteristics of acid-sensing ion channels (ASICs) and the transient receptor potential vanilloid type 1 (TRPV1) in astrocytes. There were two types of currents recorded under the application of acidic solution (pH 6.0) in cultured rat astrocytes. Transient currents were exhibited by 10% of the astrocytes, and sustained currents were exhibited by the other 90%, consistent with the features of ASIC and TRPV1 currents, respectively. Western blotting and immunofluorescence confirmed the expression of ASIC1, ASIC2a, ASIC3, and TRPV1 in cultured and in situ astrocytes. Unlike the ASICs expressed in neurons, which were mainly distributed in the cell membrane/cytoplasm, most of the ASICs in astrocytes were expressed in the nucleus. TRPV1 was more permeable to Na+ in cultured astrocytes, which differed from the typical neuronal TRPV1 that was mainly permeable to Ca2+. This study demonstrates that there are two kinds of acid-evoked currents in rat astrocytes, which may provide a new understanding about the functions of ligand-gated ion channels in astrocytes. © 2010 Wiley-Liss, Inc. [source]


    Failure of Ca2+ -activated, CREB-dependent transcription in astrocytes

    GLIA, Issue 8 2009
    Peter D. Murray
    Abstract Astrocytes participate in signaling via Ca2+ transients that spread from cell to cell across a multicellular syncytium. The effect, if any, of these Ca2+ waves on the transcription of Ca2+/cAMP-regulatory element binding protein (CREB)-dependent genes is not known. We report here that, unlike neurons, increasing intracellular Ca2+ in cultured mouse cortical astrocytes failed to activate CREB-dependent transcription, even though CREB was phosphorylated at serine 133. In contrast, both CREB phosphorylation and CREB-dependent transcription were robustly stimulated by increasing cAMP. The failure of Ca2+ -activated transcription in astrocytes was correlated with the absence of CaMKIV, a Ca2+ -dependent protein kinase required for Ca2+ -stimulated gene transcription in neurons. The inability of Ca2+ to signal via CaMKIV may insulate CREB-dependent gene transcription in astrocytes from activation by Ca2+ waves. © 2008 Wiley-Liss, Inc. [source]


    Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes

    GLIA, Issue 8 2008
    Erik B. Malarkey
    Abstract Astrocytes can respond to a variety of stimuli by elevating their cytoplasmic Ca2+ concentration and can in turn release glutamate to signal adjacent neurons. The majority of this Ca2+ is derived from internal stores while a portion also comes from outside of the cell. Astrocytes use Ca2+ entry through store-operated Ca2+ channels to refill their internal stores. Therefore, we investigated what role this store-operated Ca2+ entry plays in astrocytic Ca2+ responses and subsequent glutamate release. Astrocytes express canonical transient receptor potential (TRPC) channels that have been implicated in mediating store-operated Ca2+ entry. Here, we show that astrocytes in culture and freshly isolated astrocytes from visual cortex express TRPC1, TRPC4, and TRPC5. Indirect immunocytochemistry reveals that these proteins are present throughout the cell; the predominant expression of functionally tested TRPC1, however, is on the plasma membrane. Labeling in freshly isolated astrocytes reveals changes in TRPC expression throughout development. Using an antibody against TRPC1 we were able to block the function of TRPC1 channels and determine their involvement in mechanically and agonist-evoked Ca2+ entry in cultured astrocytes. Blocking TRPC1 was also found to reduce mechanically induced Ca2+ -dependent glutamate release. These data indicate that Ca2+ entry through TRPC1 channels contributes to Ca2+ signaling in astrocytes and the consequent glutamate release from these cells. © 2008 Wiley-Liss, Inc. [source]


    Altering DNA base excision repair: Use of nuclear and mitochondrial-targeted N -methylpurine DNA glycosylase to sensitize astroglia to chemotherapeutic agents,

    GLIA, Issue 14 2007
    Jason F. Harrison
    Abstract Primary astrocyte cultures were used to investigate the modulation of DNA repair as a tool for sensitizing astrocytes to genotoxic agents. Base excision repair (BER) is the principal mechanism by which mammalian cells repair alkylation damage to DNA and involves the processing of relatively nontoxic DNA adducts through a series of cytotoxic intermediates during the course of restoring normal DNA integrity. An adenoviral expression system was employed to target high levels of the BER pathway initiator, N -methylpurine glycosylase (MPG), to either the mitochondria or nucleus of primary astrocytes to test the hypothesis that an alteration in BER results in increased alkylation sensitivity. Increasing MPG activity significantly increased BER kinetics in both the mitochondria and nuclei. Although modulating MPG activity in mitochondria appeared to have little effect on alkylation sensitivity, increased nuclear MPG activity resulted in cell death in astrocyte cultures treated with methylnitrosourea (MNU). Caspase-3 cleavage was not detected, thus indicating that these alkylation sensitive astrocytes do not undergo a typical programmed cell death in response to MNU. Astrocytes were found to express relatively high levels of antiapoptotic Bcl-2 and Bcl-XL and very low levels of proapoptotic Bad and Bid suggesting that the mitochondrial pathway of apoptosis may be blocked making astrocytes less vulnerable to proapoptotic stimuli compared with other cell types. Consequently, this unique characteristic of astrocytes may be responsible, in part, for resistance of astrocytomas to chemotherapeutic agents. © 2007 Wiley-Liss, Inc. [source]


    Astrocytes,Friends or foes in multiple sclerosis?

    GLIA, Issue 13 2007
    Anna Williams
    Abstract In multiple sclerosis (MS), the presence of demyelinating plaques has concentrated researchers' minds on the role of the oligodendrocyte in its pathophysiology. Recently, with the rediscovery of early and widespread loss of axons in the disease, new emphasis has been put on the role of axons and axon-oligodendrocyte interactions in MS. Despite the fact that, in 1904, Müller claimed that MS was a disease of astrocytes, more recently, astrocytes have taken a back seat, except as the cells that form the final glial scar after all hope of demyelination is over. However, perhaps it is time for the return of the astrocyte to popularity in the pathogenesis of MS, with recent reports on the dual role of astrocytes in aiding degeneration and demyelination, by promoting inflammation, damage of oligodendrocytes and axons, and glial scarring, but also in creating a permissive environment for remyelination by their action on oligodendrocyte precursor migration, oligodendrocyte proliferation, and differentiation. We review these findings to try to provide a cogent view of astrocytes in the pathology of MS. © 2007 Wiley-Liss, Inc. [source]


    Distinct roles of protein kinase R and toll-like receptor 3 in the activation of astrocytes by viral stimuli

    GLIA, Issue 3 2007
    Pamela A. Carpentier
    Abstract Impaired immune surveillance and constitutive immunosuppressive properties make the central nervous system (CNS) a particular challenge to immune defense, and require that CNS-resident cells be capable of rapidly recognizing and responding to infection. We have previously shown that astrocytes respond to treatment with a TLR3 ligand, poly I:C, with the upregulation of innate immune functions. In the current study, we examine the activation of innate immune functions of astrocytes by Theiler's murine encephalomyelitis virus (TMEV), a picornavirus, which establishes a persistent infection in the CNS of susceptible strains of mice and leads to the development of an autoimmune demyelinating disease that resembles human multiple sclerosis. Astrocytes infected with TMEV are activated to produce type I interferons, the cytokine IL-6, and chemokines CCL2 and CXCL10. We further examined the mechanisms that are responsible for the activation of astrocytes in response to direct viral infection and treatment with poly I:C. We found that the cytoplasmic dsRNA-activated kinase PKR is important for innate immune responses to TMEV infection, but has no role in their induction by poly I:C delivered extracellularly. In contrast, we found that TLR3 has only a minor role in responses to TMEV infection, but is important for responses to poly I:C. These results highlight the differences between responses induced by direct, nonlytic virus infection and extracellular poly I:C. The activation of astrocytes through these different pathways has implications for the initiation and progression of viral encephalitis and demyelinating diseases such as multiple sclerosis. © 2006 Wiley-Liss, Inc. [source]


    Neuropathologic and neuroinflammatory activities of HIV-1-infected human astrocytes in murine brain

    GLIA, Issue 2 2006
    Huanyu Dou
    Abstract The balance between astrocyte and microglia neuroprotection and neurotoxicity defines the tempo of neuronal dysfunction during HIV-1-associated dementia (HAD). Astrocytes maintain brain homeostasis and respond actively to brain damage by providing functional and nutritive neuronal support. In HAD, low-level, continuous infection of astrocytes occurs, but the functional consequences of thisinfection are poorly understood. To this end, human fetal astrocytes (HFA) and monocyte-derived macrophages (MDM) were infected with HIV-1DJV and HIV-1NL4-3 (neurotropic and lymphotropic strains respectively) and a pseudotyped Vesicular Stomatitis Virus (VSV/HIV-1NL4-3) prior to intracranial injection into the basal ganglia of severe combined immunodeficient mice. Neuropathological and immunohistochemical comparisons for inflammatory and neurotoxic activities were performed amongst the infected cell types at 7 or 14 days. HIV-1-infected MDM induced significant increases in Mac-1, glial fibrillary acidic protein, ionized calcium-binding adapter molecule 1, and proinflammatory cytokine RNA and/or protein expression when compared with HSV/HIV-1- and HIV-1-infected HFA and sham-operated mice. Levels of neuron-specific nuclear protein, microtubule-associated protein 2, and neurofilament antigens were reduced significantly in the brain regions injected with human MDM infected with HIV-1DJV or VSV/HIV-1. We conclude that HIV-1 infection of astrocytes leads to limited neurodegeneration, underscoring the early and active role of macrophage-driven neurotoxicity in disease. © 2006 Wiley-Liss, Inc. [source]


    Nucleoside transporter expression and function in cultured mouse astrocytes

    GLIA, Issue 1 2005
    Liang Peng
    Abstract Uptake of purine and pyrimidine nucleosides in astrocytes is important for several reasons: (1) uptake of nucleosides contributes to nucleic acid synthesis; (2) astrocytes synthesize AMP, ADP, and ATP from adenosine and GTP from guanosine; and (3) adenosine and guanosine function as neuromodulators, whose effects are partly terminated by cellular uptake. It has previously been shown that adenosine is rapidly accumulated by active uptake in astrocytes (Hertz and Matz, Neurochem Res 14:755,760, 1989), but the ratio between active uptake and metabolism-driven uptake of adenosine is unknown, as are uptake characteristics for guanosine. The present study therefore aims at providing detailed information of nucleoside transport and transporters in primary cultures of mouse astrocytes. Reverse transcription-polymerase chain reaction identified the two equilibrative nucleoside transporters, ENT1 and ENT2, together with the concentrative nucleoside transporter CNT2, whereas CNT3 was absent, and CNT1 expression could not be investigated. Uptake studies of tritiated thymidine, formycin B, guanosine, and adenosine (3-s uptakes at 1,4°C to study diffusional uptake and 1,60-min uptakes at 37°C to study concentrative uptake) demonstrated a fast diffusional uptake of all four nucleosides, a small, Na+ -independent and probably metabolism-driven uptake of thymidine (consistent with DNA synthesis), larger metabolism-driven uptakes of guanosine (consistent with synthesis of DNA, RNA, and GTP) and especially of adenosine (consistent with rapid nucleotide synthesis), and Na+ -dependent uptakes of adenosine (consistent with its concentrative uptake) and guanosine, rendering neuromodulator uptake independent of nucleoside metabolism. Astrocytes are accordingly well suited for both intense nucleoside metabolism and metabolism-independent uptake to terminate neuromodulator effects of adenosine and guanosine. © 2005 Wiley-Liss, Inc. [source]


    Role for glia in synaptogenesis

    GLIA, Issue 3 2004
    Erik M. Ullian
    Abstract Nearly one-half of the cells in a human brain are astrocytes, but the function of these little cells remains a great mystery. Astrocytes form an intimate association with synapses throughout the adult CNS, where they help regulate ion and neurotransmitter concentrations. Recent in vitro studies, however, have found that astrocytes also exert powerful control over the number of CNS synapses that form, are essential for postsynaptic function, and are required for synaptic stability and maintenance. Moreover, recent studies increasingly implicate astrocytes in vivo as participants in activity-dependent structural and functional synaptic changes throughout the nervous system. Taken together, these data force us to rethink the role of glia. We propose that astrocytes should not be viewed primarily as support cells, but rather as cells that actively control the structural and functional plasticity of synapses in developing and adult organisms. © 2004 Wiley-Liss, Inc. [source]


    Tumor necrosis factor is required for RANTES-induced astrocyte monocyte chemoattractant protein-1 production

    GLIA, Issue 2 2003
    Yi Luo
    Abstract Astrocytes respond to stimulation with the chemokine RANTES (regulated on activation, normal T cell expressed) by production of a series of cytokines and chemokines, including tumor necrosis factor-, (TNF-,) and monocyte chemoattractant protein-1 (MCP-1). In the present study we demonstrate that RANTES induces TNF, which in turn stimulates subsequent production of MCP-1. TNF-R1 (p55) serves as the principal receptor responsible for MCP-1 synthesis. The results define an astrocyte proinflammatory cascade that amplifies synthesis of proinflammatory mediators. The implications of these findings to inflammatory diseases of the central nervous system are discussed. © 2003 Wiley-Liss, Inc. [source]


    Chlorotoxin-sensitive Ca2+ -activated Cl, channel in type R2 reactive astrocytes from adult rat brain

    GLIA, Issue 4 2003
    Stanislava Dalton
    Abstract Astrocytes express four types of Cl, or anion channels, but Ca2+ -activated Cl, (ClCa) channels have not been described. We studied Cl, channels in a morphologically distinct subpopulation (, 5% of cells) of small (10,12 ,m, 11.8 ± 0.6 pF), phase-dark, GFAP-positive native reactive astrocytes (NRAs) freshly isolated from injured adult rat brains. Their resting potential, ,57.1 ± 4.0 mV, polarized to ,72.7 ± 4.5 mV with BAPTA-AM, an intracellular Ca2+ chelator, and depolarized to ,30.7 ± 6.1 mV with thapsigargin, which mobilizes Ca2+ from intracellular stores. With nystatin-perforated patch clamp, thapsigargin activated a current that reversed near the Cl, reversal potential, which was blocked by Cl, channel blockers, 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and Zn2+, by I, (10 mM), and by chlorotoxin (EC50 = 47 nM). With conventional whole-cell clamp, NPPB- and Zn2+ -sensitive currents became larger with increasing [Ca2+]i (10, 150, 300 nM). Single-channel recordings of inside-out patches confirmed Ca2+ sensitivity of the channel and showed open-state conductances of 40, 80, 130, and 180 pS, and outside-out patches confirmed sensitivity to chlorotoxin. In primary culture, small phase-dark NRAs developed into small GFAP-positive bipolar cells with chlorotoxin-sensitive ClCa channels. Imaging with biotinylated chlorotoxin confirmed the presence of label in GFAP-positive cells from regions of brain injury, but not from uninjured brain. Chlorotoxin-tagged cells isolated by flow cytometry and cultured up to two passages exhibit positive labeling for GFAP and vimentin, but not for prolyl 4-hydroxylase (fibroblast), A2B5 (O2A progenitor), or OX-42 (microglia). Expression of a novel chlorotoxin-sensitive ClCa channel in a morphologically distinct subpopulation of NRAs distinguishes these cells as a new subtype of reactive astrocyte. GLIA 42:325,339, 2003. © 2003 Wiley-Liss, Inc. [source]


    RANTES stimulates inflammatory cascades and receptor modulation in murine astrocytes

    GLIA, Issue 1 2002
    Yi Luo
    Abstract Cultured mouse astrocytes respond to the CC chemokine RANTES by production of chemokine and cytokine transcripts. Stimulation of astrocytes with 1 nM RANTES or 3,10 nM of the structurally related chemokines (eotaxin, macrophage inflammatory protein-1, and -, [MIP-1,, MIP-1,]) induced transcripts for KC, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-, (TNF-,), MIP-1,, MIP-2, and RANTES in a chemokine and cell-specific fashion. Synthesis of chemokine (KC and MCP-1) and cytokine (TNF-,) proteins was also demonstrated. RANTES-mediated chemokine synthesis was specifically inhibited by pertussis toxin, indicating that G-protein-coupled chemokine receptors participated in astrocyte signaling. Astrocytes expressed CCR1 and CCR5 (the redundant RANTES receptors). Astrocytes derived from mice with targeted mutations of either CCR1 or CCR5 respond after RANTES stimulation, suggesting multiple chemokine receptors may separately mediate RANTES responsiveness in astrocytes. Preliminary data suggest activation of the MAP kinase pathway is also critical for RANTES-mediated signaling in astrocytes. Treatment with RANTES specifically modulated astrocyte receptors upregulating intercellular adhesion molecule 1 (ICAM-1) and downregulating CX3CR1 expression. Thus, after chemokine treatment, astrocytes release proinflammatory mediators and reprogram their surface molecules. The combined effects of RANTES may serve to amplify inflammatory responses within the central nervous system. GLIA 39:19,30, 2002. © 2002 Wiley-Liss, Inc. [source]


    The triakontatetraneuropeptide TTN increases [Ca2+]i in rat astrocytes through activation of peripheral-type benzodiazepine receptors

    GLIA, Issue 2 2001
    Pierrick Gandolfo
    Abstract Astrocytes synthesize a series of regulatory peptides called endozepines, which act as endogenous ligands of benzodiazepine receptors. We have recently shown that one of these endozepines, the triakontatetraneuropeptide TTN, stimulates DNA synthesis in astroglial cells. The purpose of the present study was to determine the mechanism of action of TTN on cultured rat astrocytes. Binding of the peripheral-type benzodiazepine receptor ligand [3H]Ro5-4864 to intact astrocytes was displaced by TTN, whereas its C-terminal fragment (TTN[17,34], the octadecaneuropeptide ODN) did not compete for [3H]Ro5-4864 binding. Microfluorimetric measurement of cytosolic calcium concentrations ([Ca2+]i) with the fluorescent probe indo-1 showed that TTN (10,10 to 10,6 M) provokes a concentration-dependent increase in [Ca2+]i in cultured astrocytes. Simultaneous administration of TTN (10,8 M) and Ro5-4864 (10,5 M) induced an increase in [Ca2+]i similar to that obtained with Ro5-4864 alone. In contrast, the effects of TTN (10,8 M) and ODN (10,8 M) on [Ca2+]i were strictly additive. Chelation of extracellular Ca2+ by EGTA (6 mM) or blockage of Ca2+ channels with Ni2+ (2 mM) abrogated the stimulatory effect of TTN. The calcium influx evoked by TTN (10,7 M) or by Ro5-4864 (10,5 M) was not affected by the N- and T-type calcium channel blockers ,-conotoxin (10,6 M) and mibefradil (10,6 M), but was significantly reduced by the L-type calcium channel blocker nifedipine (10,7 M). Patch-clamp studies showed that, at negative potentials, TTN (10,7 M) induced a sustained depolarization. Reduction of the chloride concentration in the extracellular solution shifted the reversal potential from 0 mV to a positive potential. These data show that TTN, acting through peripheral-type benzodiazepine receptors, provokes chloride efflux, which in turn induces calcium influx via L-type calcium channels in rat astrocytes. GLIA 35:90,100, 2001. © 2001 Wiley-Liss, Inc. [source]


    Role of the astrocytic ETB receptor in the regulation of extracellular endothelin-1 during hypoxia

    GLIA, Issue 1 2001
    Martin Hasselblatt
    Abstract Astrocytes are known to possess an effective endothelin (ET) eliminatory system which involves astrocytic ETA and ETB receptors and may become particularly relevant under pathophysiological conditions. The present study has therefore been designed to explore the effect of standardized hypoxia on extracellular concentrations of endothelin-1 (ET-1) and on endothelin-converting enzyme (ECE) activity in primary rat astrocytes genetically (sl/sl) or experimentally (dexamethasone) deficient in ETB receptors. The results revealed (1) a hypoxia-mediated decrease of extracellular ET-1 in wildtype astrocytes (+/+) that was not observed in ETB -deficient (sl/sl) cultures; (2) an ET receptor antagonist-induced increase in ET-1 in the media of both genotypes with further elevation upon hypoxia in +/+ cultures only; (3) augmentation of the dexamethasone-induced increase in extracellular ET-1 by hypoxia in +/+, but not in sl/sl cultures; (4) synergistic reduction of ETB gene transcription by hypoxia and dexamethasone; and (5) significant increases in endothelin-converting enzyme activity in the presence of hypoxia. To conclude, hypoxia stimulates astrocytic release of mature ET-1. This stimulation is (over)compensated for by increased ET-1 binding to functional ETB receptors. ETB deficiency, whether genetic or experimentally induced, impairs elimination of extracellular ET-1. GLIA 34:18,26, 2001. © 2001 Wiley-Liss, Inc. [source]


    Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2008
    Michelle L. Olsen
    Abstract Astrocytes and oligodendrocytes are characterized by a very negative resting potential and a high resting permeability for K+ ions. Early pharmacological and biophysical studies suggested that the resting potential is established by the activity of inwardly rectifying, Ba2+ sensitive, weakly rectifying Kir channels. Molecular cloning has identified 16 Kir channels genes of which several mRNA transcripts and protein products have been identified in glial cells. However, genetic deletion and siRNA knock-down studies suggest that the resting conductance of astrocytes and oligodendrocytes is largely due to Kir4.1. Loss of Kir4.1 causes membrane depolarization, and a break-down of K+ and glutamate homeostasis which results in seizures and wide-spread white matter pathology. Kir channels have also been shown to act as critical regulators of cell division whereby Kir function is correlated with an exit from the cell cycle. Conversely, loss of functional Kir channels is associated with re-entry of cells into the cell cycle and gliosis. A loss of functional Kir channels has been shown in a number of neurological diseases including temporal lobe epilepsy, amyotrophic lateral sclerosis, retinal degeneration and malignant gliomas. In the latter, expression of Kir4.1 is sufficient to arrest the aberrant growth of these glial derived tumor cells. Kir4.1 therefore represents a potential therapeutic target in a wide variety of neurological conditions. [source]


    The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2008
    Natalie A. Prow
    Abstract Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1, release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1, and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1,-deficient animals. Together, these data show that IL-1, inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date. [source]


    Glucose metabolism and proliferation in glia: role of astrocytic gap junctions

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2006
    Arantxa Tabernero
    Abstract Astrocytes play a well-established role in brain metabolism, being a key element in the capture of energetic compounds from the circulation and in their delivery to active neurons. Their metabolic status is affected in many pathological situations, such as gliomas, which are the most common brain tumors. This proliferative dysfunction is associated with changes in gap junctional communication, a property strongly developed in normal astrocytes studied both in vitro and in vivo. Here, we summarize and discuss the findings that have lead to the identification of a link between gap junctions, glucose uptake, and proliferation. Indeed, the inhibition of gap junctional communication is associated with an increase in glucose uptake due to a rapid change in the localization of both GLUT-1 and type I hexokinase. This effect persists due to the up-regulation of GLUT-1 and type I hexokinase and to the induction of GLUT-3 and type II hexokinase. In addition, cyclins D1 and D3 have been found to act as sensors of the inhibition of gap junctions and have been proposed to play the role of mediators in the mitogenic effect observed. Conversely, in C6 glioma cells, characterized by a low level of intercellular communication, an increase in gap junctional communication reduces glucose uptake by releasing type I and type II hexokinases from the mitochondria and decreases the exacerbated rate of proliferation due to the up-regulation of the Cdk inhibitors p21 and p27. Identification of the molecular actors involved in these pathways should allow the determination of potential therapeutic targets that could lead to the testing of alternative strategies to prevent, or at least slow down, the proliferation of glioma cells. [source]


    Cultured Granule Cells and Astrocytes from Cerebellum Differ in Metabolizing Sphingosine

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2000
    Laura Riboni
    Sphingosine metabolism was studied in primary cultures of differentiated cerebellar granule cells and astrocytes. After a 2-h pulse with [C3 - 3H]sphingosine at different doses (0.1-200 nmol/mg of cell protein), both cell types efficiently incorporated the long chain base ; the percentage of cellular [3H]sphingosine over total label incorporation was extremely low at sphingosine doses of <10 nmol/mg of cell protein and increased at higher doses. Most of the [3H]sphingosine taken up underwent metabolic processing by N -acylation, 1-phosphorylation, and degradation (assessed as 3H2O released in the medium). The metabolic processing of exogenous sphingosine was extremely efficient in both cells, granule cells and astrocytes being able to metabolize, respectively, an amount of sphingosine up to 80- and 300-fold the cellular content of this long chain base in 2 h. At the different doses, the prevailing metabolic route of sphingosine was different. At lower doses and in a wide dose range, the major metabolic fate of sphingosine was N -acylation. With increasing doses, there was first increased sphingosine degradation and then increased levels of sphingosine-1-phosphate. The data demonstrate that, in neurons and astrocytes, the metabolic machinery devoted to sphingosine processing is different, astrocytes possessing an overall higher capacity to synthesize the bioactive compounds ceramide and sphingosine-1-phosphate. [source]


    The Adaptive Brain: Glenn Hatton and the Supraoptic Nucleus

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2010
    G. Leng
    In December 2009, Glenn Hatton died, and neuroendocrinology lost a pioneer who had done much to forge our present understanding of the hypothalamus and whose productivity had not faded with the passing years. Glenn, an expert in both functional morphology and electrophysiology, was driven by a will to understand the significance of his observations in the context of the living, behaving organism. He also had the wit to generate bold and challenging hypotheses, the wherewithal to expose them to critical and elegant experimental testing, and a way with words that gave his papers and lectures clarity and eloquence. The hypothalamo-neurohypophysial system offered a host of opportunities for understanding how physiological functions are fulfilled by the electrical activity of neurones, how neuronal behaviour changes with changing physiological states, and how morphological changes contribute to the physiological response. In the vision that Glenn developed over 35 years, the neuroendocrine brain is as dynamic in structure as it is adaptable in function. Its adaptability is reflected not only by mere synaptic plasticity, but also by changes in neuronal morphology and in the morphology of the glial cells. Astrocytes, in Glenn's view, were intimate partners of the neurones, partners with an essential role in adaptation to changing physiological demands. [source]


    Oestrogen Regulates the Expression and Function of Dopamine Transporters in Astrocytes of the Nigrostriatal System

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2007
    S. Karakaya
    Dopamine is actively and specifically eliminated from the extracellular space by astrocytes and neurones through dopamine transporters (DAT) and, afterwards, either recycled into vesicles or metabolised. The availability of dopamine reflects a critical point in the regulation of dopamine activity within the nigrostriatal circuit under normal and pathological conditions. From previous studies, we know that oestrogen regulates the efficacy of dopaminergic neurones at the synaptic level and improves dopamine function during Parkinson's disease. Accordingly, we investigated the contribution of local astroglial for extracellular dopamine elimination and the impact of oestrogen on DAT expression and activity. Using neonatal striatal and midbrain astrocyte cultures, we could demonstrate that astrocytes possess a specific dopamine uptake machinery and express DAT at considerable levels. The application of 17,-oestradiol decreased the expression of DAT by 80% and 60% in midbrain and striatal astroglia cultures, respectively. The unspecific dopamine transporters (OCT3, VMAT2) were not detected in astroglia. Functionally, oestrogen exposure inhibited the clearance of dopamine from the extracellular space by 45% and 35% compared to controls in midbrain and striatal astroglia, respectively. The effect on DAT expression and activity was completely antagonised by the oestrogen receptor antagonist ICI 182 780. In conclusion, our data suggest that the positive reinforcement of dopamine transmission under physiological conditions and the alleviative impact of oestrogen under pathological conditions may be the result of a decline in DAT expression and therefore delayed dopamine uptake by astroglia. [source]


    Expression of plasminogen activator inhibitor-1 and protease nexin-1 in human astrocytes: Response to injury-related factors

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2010
    Karin Hultman
    Abstract Astrocytes play a diverse role in central nervous system (CNS) injury. Production of the serine protease inhibitors (serpins) plasminogen activator inhibitor-1 (PAI-1) and protease nexin-1 (PN-1) by astrocytes may counterbalance excessive serine protease activity associated with CNS pathologies such as ischemic stroke. Knowledge regarding the regulation of these genes in the brain is limited, so the objective of the present study was to characterize the effects of injury-related factors on serpin expression in human astrocytes. Native human astrocytes were exposed to hypoxia or cytokines, including interleukin-6 (IL-6), IL-1,, tumor necrosis factor-, (TNF-,), IL-10, transforming growth factor-, (TGF-,), and TGF-, for 0,20 hr. Serpin mRNA expression and protein secretion were determined by real-time RT-PCR and ELISA, respectively. Localization of PAI-1 and PN-1 in human brain tissue was examined by immunohistochemistry. Hypoxia and all assayed cytokines induced a significant increase in PAI-1 expression, whereas prolonged treatment with IL-1, or TNF-, resulted in a significant down-regulation. The most pronounced induction of both PAI-1 and PN-1 was observed following early treatment with TGF-,. In contrast to PAI-1, the PN-1 gene did not respond to hypoxia. Positive immunoreactivity for PAI-1 in human brain tissue was demonstrated in reactive astrocytes within gliotic areas of temporal cortex. We show here that human astrocytes express PAI-1 and PN-1 and demonstrate that this astrocytic expression is regulated in a dynamic manner by injury-related factors. © 2010 Wiley-Liss, Inc. [source]


    Molecular basis for detection of invading pathogens in the brain

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2008
    Jeppe Falsig
    Abstract Classical immunology textbooks have described the central nervous system as an immune-privileged site, i.e., as devoid of inflammatory and host-vs.-graft immunoreactions. This view has been refined, since we now know that hematopoietic cells infiltrate the CNS under certain circumstances and that CNS-resident cells are capable of launching an innate immune response. Microglia cells express an extensive repertoire of pattern-recognition receptors and act as sentinels surveilling the CNS for possible damage or infection. Astrocytes are the most abundant cell type in the brain, and they are capable of launching a strong supportive innate immune response. Novel findings show that both astrocytes and, surprisingly, even neurons express pattern-recognition receptors. Activation of these receptors leads to a functional response, indicating that cells other than microglia are capable of initiating a primary innate immune response against CNS-invading pathogens. Here, we put these findings into context with what has been learned from recent in vitro and in vivo experiments about the initiation of an innate immune response in the brain. © 2007 Wiley-Liss, Inc. [source]


    Multiple mechanisms that prevent excessive brain inflammation

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2007
    Myung-Soon Yang
    Abstract Inflammation of the injured brain has a double-edged effect. Inflammation protects the brain from infection, but it aggravates injury. Furthermore, brain inflammation is considered a risk factor for neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Emerging evidence supports the activation of negative regulatory mechanisms during this process to prevent prolonged and extensive inflammation. The inflammatory stimulators themselves or products of inflammatory cells may induce the expression of negative feedback regulators, such as suppressor of cytokine signaling (SOCS)-family proteins, antioxidant enzymes, and antiinflammatory cytokines. Furthermore, death of activated microglia (major inflammatory cells in the brain) may regulate brain inflammation. Astrocytes, the most abundant cells in the brain, may also act in preventing microglial overactivation. Therefore, we propose that the extent and duration of brain inflammation is tightly regulated through the cooperation of multiple mechanisms to maximize antipathogenic effects and minimize tissue damage. © 2007 Wiley-Liss, Inc. [source]


    Astrocyte expression of a dominant-negative interferon-, receptor

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2005
    Claudia Hindinger
    Abstract Interferon-, (IFN-,) is a major proinflammatory cytokine, and binding to its nearly ubiquitous receptor induces a wide variety of biological functions. To explore the role(s) of IFN-, signaling in astrocytes, transgenic mice (GFAP/IFN-,R1,IC) expressing a dominant-negative IFN-, receptor alpha chain under control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter were generated. Transgenic mice developed normally, had normal astrocyte numbers and distribution, and exhibited no clinically overt phenotype. Transgene mRNA expression was detected only in the CNS, and the transgene-encoded IFN-, receptor 1 colocalized with GFAP, which is consistent with astrocyte expression. Astrocytes from transgenic mice exhibited reduced IFN-,-induced signaling as measured by major histocompatibility class II induction. Neither CNS inflammation nor perforin-mediated clearance of a neurotropic mouse hepatitis virus from astrocytes was impaired following infection. Transgenic mice with impaired astrocyte responsiveness to IFN-, provide a model for studying the selective astrocyte-dependent effects of this critical cytokine in CNS immunopathology. © 2005 Wiley-Liss, Inc. [source]


    Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1-2 2005
    Stefan Kahlert
    Abstract Generation of reactive oxygen species (ROS) in brain tissue leads to neurodegeneration. The major source of ROS is the mitochondrial respiratory chain. We studied regulation of Ca2+ level, mitochondrial potential, and ROS generation in defined mixed hippocampal cell cultures exposed to glutamate (100 ,M). Recordings were made from individually identified astrocytes and neurons to compare the physiologic responses in both cell types. Neurons identified by synaptotagmin immunoreactivity were characterized functionally by the fast Ca2+ increase with K+ (50 mM) stimulation, and the astrocytes identified by glial fibrillary acidic protein (GFAP) staining had the functional characteristic of a transient Ca2+ peak in response to ATP (10 ,M) stimulation. We found that the glutamate-mediated Ca2+ response in neurons is due largely to influx of extracellular Ca2+. This is consistent with our finding that in cultured hippocampal neurons, stores depending on the activity of the sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) pump had a low Ca2+ content, regardless of whether the neurons were challenged or not with K+ before applying the SERCA inhibitor cyclopiazonic acid (CPA). Astrocytes displayed a large CPA-mediated Ca2+ response, indicating a high level of Ca2+ load in the stores in astrocytes. Importantly, the rise in ROS generation due to glutamate application was cell-type specific. In neurons, glutamate induced a marked rise in generation of ROS, but not in astrocytes. In both astrocytes and neurons, the mitochondrial potential was increased in response to glutamate challenge. We conclude that in neurons, Ca2+ influx accounts for the increased ROS generation in response to glutamate. This might explain the high vulnerability of neurons to glutamate challenge compared to the vulnerability of astrocytes. The high resistance of astrocytes is accompanied by an efficient downregulation of cytosolic Ca2+, which is not found in neurons. © 2004 Wiley-Liss, Inc. [source]