Home About us Contact | |||
Aspen Stands (aspen + stand)
Selected AbstractsTropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE projectFUNCTIONAL ECOLOGY, Issue 3 2003D. F. Karnosky Summary 1The impacts of elevated atmospheric CO2 and/or O3 have been examined over 4 years using an open-air exposure system in an aggrading northern temperate forest containing two different functional groups (the indeterminate, pioneer, O3 -sensitive species Trembling Aspen, Populus tremuloides and Paper Birch, Betula papyrifera, and the determinate, late successional, O3 -tolerant species Sugar Maple, Acer saccharum). 2The responses to these interacting greenhouse gases have been remarkably consistent in pure Aspen stands and in mixed Aspen/Birch and Aspen/Maple stands, from leaf to ecosystem level, for O3 -tolerant as well as O3 -sensitive genotypes and across various trophic levels. These two gases act in opposing ways, and even at low concentrations (1·5 × ambient, with ambient averaging 34,36 nL L,1 during the summer daylight hours), O3 offsets or moderates the responses induced by elevated CO2. 3After 3 years of exposure to 560 µmol mol,1 CO2, the above-ground volume of Aspen stands was 40% above those grown at ambient CO2, and there was no indication of a diminishing growth trend. In contrast, O3 at 1·5 × ambient completely offset the growth enhancement by CO2, both for O3 -sensitive and O3 -tolerant clones. Implications of this finding for carbon sequestration, plantations to reduce excess CO2, and global models of forest productivity and climate change are presented. [source] POSTFIRE SUCCESSION IN AN ADIRONDACK FOREST,GEOGRAPHICAL REVIEW, Issue 4 2007Susy Svatek Ziegler ABSTRACT. Landscape diversity has increased with the surprising postfire establishment of aspen at upper elevations (700,945 meters above sea level) in the High Peaks of Adirondack Park in upstate New York. Tree seedlings returned quickly to the charred slopes west of Noonmark Mountain after an accidental fire consumed the forest in 1999. Aspen stands have replaced the spruce-fir-birch forests in the burned area even though mountain paper birch is expected to colonize burned sites at these elevations. Environmental conditions, historical events, and unique circumstances help explain why quaking aspen and bigtooth aspen rather than paper birch blanket the burned mountainside. Climate change over the past century to warmer, wetter conditions may have fostered this marked shift in species composition. In the unburned firebreak that people cleared to contain the flames, pin cherry has regenerated from seeds stored in the soil for nearly a century. The history of pin cherry on the site suggests that large fires or severe windthrow may have been more common in the region than was previously documented. [source] Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm studyGLOBAL CHANGE BIOLOGY, Issue 2 2009LINGLI LIU Abstract Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased long-term C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230-day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 × litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years. We found that small decreases in litter [N] under elevated CO2 had minor effects on microbial biomass carbon, microbial biomass nitrogen and dissolved inorganic nitrogen. Increasing litter addition rates resulted in linear increase in total C and new C (C from added litter) that accumulated in whole soil as well as in the high density soil fraction (HDF), despite higher cumulative C loss by respiration. Total N retained in whole soil and in HDF also increased with litter addition rate as did accumulation of new C per unit of accumulated N. Based on our microcosm comparisons and regression models, we expected that enhanced C inputs rather than changes in litter chemistry would be the dominant factor controlling soil C levels and turnover at the current level of litter production rate (230 g C m,2 yr,1 under ambient CO2). However, our analysis also suggests that the effects of changes in biochemistry caused by elevated CO2 could become significant at a higher level of litter production rate, with a trend of decreasing total C in HDF, new C in whole soil, as well as total N in whole soil and HDF. [source] Soil carbon fluxes and stocks in a Great Lakes forest chronosequenceGLOBAL CHANGE BIOLOGY, Issue 1 2009JIANWU TANG Abstract We measured soil respiration and soil carbon stocks, as well as micrometeorological variables in a chronosequence of deciduous forests in Wisconsin and Michigan. The chronosequence consisted of (1) four recently disturbed stands, including a clearcut and repeatedly burned stand (burn), a blowdown and partial salvage stand (blowdown), a clearcut with sparse residual overstory (residual), and a regenerated stand from a complete clearcut (regenerated); (2) four young aspen (Populus tremuloides) stands in average age of 10 years; (3) four intermediate aspen stands in average age of 26 years; (4) four mature northern hardwood stands in average age of 73 years; and (5) an old-growth stand approximately 350-years old. We fitted site-based models and used continuous measurements of soil temperature to estimate cumulative soil respiration for the growing season of 2005 (days 133,295). Cumulative soil respiration in the growing season was estimated to be 513, 680, 747, 747, 794, 802, 690, and 571 g C m,2 in the burn, blowdown, residual, regenerated, young, intermediate, mature, and old-growth stands, respectively. The measured apparent temperature sensitivity of soil respiration was the highest in the regenerated stand, and declined from the young stands to the old-growth. Both, cumulative soil respiration and basal soil respiration at 10 °C, increased during stand establishment, peaked at intermediate age, and then decreased with age. Total soil carbon at 0,60 cm initially decreased after harvest, and increased after stands established. The old-growth stand accumulated carbon in deep layers of soils, but not in the surface soils. Our study suggests a complexity of long-term soil carbon dynamics, both in vertical depth and temporal scale. [source] Aspen succession and nitrogen loading: a case for epiphytic lichens as bioindicators in the Rocky Mountains, USAJOURNAL OF VEGETATION SCIENCE, Issue 3 2009Paul C. Rogers Abstract Question: Can lichen communities be used to assess short- and long-term factors affecting seral quaking aspen (Populus tremuloides) communities at the landscape scale? Location: Bear River Range, within the Rocky Mountains, in northern Utah and southern Idaho, USA. Method: Forty-seven randomly selected mid-elevation aspen stands were sampled for lichens and stand conditions. Plots were characterized according to tree species cover, basal area, stand age, bole scarring, tree damage, and presence of lichen species. We also recorded ammonia emissions with passive sensors at 25 urban and agricultural sites throughout an adjacent populated valley upwind of the forest stands. Nonmetric multidimensional scaling (NMS) ordination was used to evaluate an array of 20 variables suspected to influence lichen communities. Results: In NMS, forest succession explained most variance in lichen composition and abundance, although atmospheric nitrogen from local agricultural and urban sources also significantly influenced the lichen communities. Abundance of nitrophilous lichen species decreased with distance from peak ammonia sources and the urban center in all aspen succession classes. One lichen, Phaeophyscia nigricans, was found to be an effective bioindicator of nitrogen loading. Conclusions: Lichen communities in this landscape assessment of aspen forests showed clear responses to long-term (stand succession) and short-term (nitrogen deposition) influences. At the same time, several environmental factors (e.g. tree damage and scarring, distance to valley, topography, and stand age) had little influence on these same lichen communities. We recommend further use of epiphytic lichens as bioindicators of dynamic forest conditions. [source] |