Aspen Forest (aspen + forest)

Distribution by Scientific Domains


Selected Abstracts


Climatic controls on the carbon and water balances of a boreal aspen forest, 1994,2003

GLOBAL CHANGE BIOLOGY, Issue 3 2007
ALAN G. BARR
Abstract The carbon and water budgets of boreal and temperate broadleaf forests are sensitive to interannual climatic variability and are likely to respond to climate change. This study analyses 9 years of eddy-covariance data from the Boreal Ecosystem Research and Monitoring Sites (BERMS) Southern Old Aspen site in central Saskatchewan, Canada and characterizes the primary climatic controls on evapotranspiration, net ecosystem production (FNEP), gross ecosystem photosynthesis (P) and ecosystem respiration (R). The study period was dominated by two climatic extremes: extreme warm and cool springs, which produced marked contrasts in the canopy duration, and a severe, 3-year drought. Annual FNEP varied among years from 55 to 367 g C m,2 (mean 172, SD 94). Interannual variability in FNEP was controlled primarily by factors that affected the R/P ratio, which varied between 0.74 and 0.96 (mean 0.87, SD 0.06). Canopy duration enhanced P and FNEP with no apparent effect on R. The fraction of annual photosynthetically active radiation (PAR) that was absorbed by the canopy foliage varied from 38% in late leaf-emergence years to 51% in early leaf-emergence years. Photosynthetic light-use efficiency (mean 0.0275, SD 0.026 mol C mol,1 photons) was relatively constant during nondrought years but declined with drought intensity to a minimum of 0.0228 mol C mol,1 photons during the most severe drought year. The impact of drought on FNEP varied with drought intensity. Years of mild-to-moderate drought suppressed R while having little effect on P, so that FNEP was enhanced. Years of severe drought suppressed both R and P, causing either little change or a subtle reduction in FNEP. The analysis produced new insights into the dominance of canopy duration as the most important biophysical control on FNEP. The results suggested a simple conceptual model for annual FNEP in boreal deciduous forests. When water is not limiting, annual P is controlled by canopy duration via its influence on absorbed PAR at constant light-use efficiency. Water stress suppresses P, by reducing light-use efficiency, and R, by limiting growth and/or suppressing microbial respiration. The high photosynthetic light-use efficiency showed this site to be a highly productive boreal deciduous forest, with properties similar to many temperate deciduous forests. [source]


The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada

HYDROLOGICAL PROCESSES, Issue 9 2004
P. D. Blanken
Abstract Annual fluxes of canopy-level heat, water vapour and carbon dioxide were measured using eddy covariance both above the aspen overstory (Populus tremuloides Michx.) and hazelnut understory (Corylus cornuta Marsh.) of a boreal aspen forest (53·629 °N 106·200 °W). Partitioning of the fluxes between overstory and understory components allowed the calculation of canopy conductance to water vapour for both species. On a seasonal basis, the canopy conductance of the aspen accounted for 70% of the surface conductance, with the latter a strong function of the forest's leaf area index. On a half-hour basis, the canopy conductance of both species decreased non-linearly as the leaf-surface saturation deficits increased, and was best parameterized and showed similar sensitivities to a modified form of the Ball,Berry,Woodrow index, where relative humidity was replaced with the reciprocal of the saturation deficit. The negative feedback between the forest evaporation and the saturation deficit in the convective boundary layer varied from weak when the forest was at full leaf to strong when the forest was developing or loosing leaves. The coupling between the air at the leaf surface and the convective boundary layer also varied seasonally, with coupling decreasing with increasing leaf area. Compared with coniferous boreal forests, the seasonal changes in leaf area had a unique impact on vegetation,atmosphere interactions. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Phenology of fine roots and leaves in forest and grassland

JOURNAL OF ECOLOGY, Issue 6 2008
Diego F. Steinaker
Summary 1The phenology of temperate vegetation is advancing in association with climate warming. Most phenology data, however, comes from flowers and tree leaves. We tested the generality of results from shoot phenology by expanding data collection in two new directions. We related forest leaf phenology to root phenology, and to phenology in a second habitat, grassland. 2We measured leaf and root phenology simultaneously in aspen forest and adjacent native grassland. Root growth accounts for 80,90% of productivity in these habitats. Seasonal variation in soil moisture and temperature were also measured. 3Forest leaf production was greatest about 45 days before peak root production, resulting in a significant negative correlation between leaf and root production in forest. Grassland leaf production was greatest about 15 days before peak root production, and grassland leaf and root production were significantly positively correlated. The duration of root production was 40% greater than that of shoot production. 4Forest leaf production increased significantly with increasing soil moisture, but not temperature. In contrast, the production of forest roots, grassland roots and grassland leaves increased significantly with soil temperature. 5Synthesis. The most commonly measured aspect of phenology, forest leaves, is out of step with the majority of production in forest, as well as phenology in grassland. The invasion of grassland by woody vegetation is characterized by a decoupling of root and shoot phenology, a result that has not been reported previously. Given the global nature of woody plant encroachment, this decoupling may influence our general understanding of productivity and carbon sequestration in response to warming. [source]


Aspen succession and nitrogen loading: a case for epiphytic lichens as bioindicators in the Rocky Mountains, USA

JOURNAL OF VEGETATION SCIENCE, Issue 3 2009
Paul C. Rogers
Abstract Question: Can lichen communities be used to assess short- and long-term factors affecting seral quaking aspen (Populus tremuloides) communities at the landscape scale? Location: Bear River Range, within the Rocky Mountains, in northern Utah and southern Idaho, USA. Method: Forty-seven randomly selected mid-elevation aspen stands were sampled for lichens and stand conditions. Plots were characterized according to tree species cover, basal area, stand age, bole scarring, tree damage, and presence of lichen species. We also recorded ammonia emissions with passive sensors at 25 urban and agricultural sites throughout an adjacent populated valley upwind of the forest stands. Nonmetric multidimensional scaling (NMS) ordination was used to evaluate an array of 20 variables suspected to influence lichen communities. Results: In NMS, forest succession explained most variance in lichen composition and abundance, although atmospheric nitrogen from local agricultural and urban sources also significantly influenced the lichen communities. Abundance of nitrophilous lichen species decreased with distance from peak ammonia sources and the urban center in all aspen succession classes. One lichen, Phaeophyscia nigricans, was found to be an effective bioindicator of nitrogen loading. Conclusions: Lichen communities in this landscape assessment of aspen forests showed clear responses to long-term (stand succession) and short-term (nitrogen deposition) influences. At the same time, several environmental factors (e.g. tree damage and scarring, distance to valley, topography, and stand age) had little influence on these same lichen communities. We recommend further use of epiphytic lichens as bioindicators of dynamic forest conditions. [source]