Home About us Contact | |||
Asexual Populations (asexual + population)
Selected AbstractsADAPTIVE EVOLUTION OF ASEXUAL POPULATIONS UNDER MULLER'S RATCHETEVOLUTION, Issue 7 2004Doris Bachtrog Abstract We study the population genetics of adaptation in nonequilibrium haploid asexual populations. We find that the accumulation of deleterious mutations, due to the operation of Muller's ratchet, can considerably reduce the rate of fixation of advantageous alleles. Such reduction can be approximated reasonably well by a reduction in the effective population size. In the absence of Muller's ratchet, a beneficial mutation can only become fixed if it creates the best possible genotype; if Muller's ratchet operates, however, mutations initially arising in a nonoptimal genotype can also become fixed in the population, since the loss of the least-loaded class implies that an initially nonoptimal background can become optimal. We show that, while the rate at which adaptive mutations become fixed is reduced, the rate of fixation of deleterious mutations due to the ratchet is not changed by the presence of beneficial mutations as long as the rate of their occurrence is low and the deleterious effects of mutations (sd) are higher than the beneficial effects (sa). When sa>sd, the advantage of a beneficial mutation can outweigh the deleterious effects of associated mutations. Under these conditions, a beneficial allele can drag to fixation deleterious mutations initially associated with it at a higher rate than in the absence of advantageous alleles. We propose analytical approximations for the rates of accumulation of deleterious and beneficial mutations. Furthermore, when allowing for the possible occurrence of interference between beneficial alleles, we find that the presence of deleterious mutations of either very weak or very strong effect can marginally increase the rate of accumulation of beneficial mutations over that observed in the absence of such deleterious mutations. [source] Genetic variation in organisms with sexual and asexual reproductionJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2003B. O. Bengtsson Abstract The genetic variation in a partially asexual organism is investigated by two models suited for different time scales. Only selectively neutral variation is considered. Model 1 shows, by the use of a coalescence argument, that three sexually derived individuals per generation are sufficient to give a population the same pattern of allelic variation as found in fully sexually reproducing organisms. With less than one sexual event every third generation, the characteristic pattern expected for asexual organisms appear, with strong allelic divergence between the gene copies in individuals. At intermediary levels of sexuality, a complex situation reigns. The pair-wise allelic divergence under partial sexuality exceeds, however, always the corresponding value under full sexuality. These results apply to large populations with stable reproductive systems. In a more general framework, Model 2 shows that a small number of sexual individuals per generation is sufficient to make an apparently asexual population highly genotypically variable. The time scale in terms of generations needed to produce this effect is given by the population size and the inverse of the rate of sexuality. [source] EVALUATION OF ELEVATED PLOIDY AND ASEXUAL REPRODUCTION AS ALTERNATIVE EXPLANATIONS FOR GEOGRAPHIC PARTHENOGENESIS IN EUCYPRIS VIRENS OSTRACODSEVOLUTION, Issue 4 2010Sofia Adolfsson Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality. [source] ADAPTIVE EVOLUTION OF ASEXUAL POPULATIONS UNDER MULLER'S RATCHETEVOLUTION, Issue 7 2004Doris Bachtrog Abstract We study the population genetics of adaptation in nonequilibrium haploid asexual populations. We find that the accumulation of deleterious mutations, due to the operation of Muller's ratchet, can considerably reduce the rate of fixation of advantageous alleles. Such reduction can be approximated reasonably well by a reduction in the effective population size. In the absence of Muller's ratchet, a beneficial mutation can only become fixed if it creates the best possible genotype; if Muller's ratchet operates, however, mutations initially arising in a nonoptimal genotype can also become fixed in the population, since the loss of the least-loaded class implies that an initially nonoptimal background can become optimal. We show that, while the rate at which adaptive mutations become fixed is reduced, the rate of fixation of deleterious mutations due to the ratchet is not changed by the presence of beneficial mutations as long as the rate of their occurrence is low and the deleterious effects of mutations (sd) are higher than the beneficial effects (sa). When sa>sd, the advantage of a beneficial mutation can outweigh the deleterious effects of associated mutations. Under these conditions, a beneficial allele can drag to fixation deleterious mutations initially associated with it at a higher rate than in the absence of advantageous alleles. We propose analytical approximations for the rates of accumulation of deleterious and beneficial mutations. Furthermore, when allowing for the possible occurrence of interference between beneficial alleles, we find that the presence of deleterious mutations of either very weak or very strong effect can marginally increase the rate of accumulation of beneficial mutations over that observed in the absence of such deleterious mutations. [source] THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS.EVOLUTION, Issue 1 2002VIII. Abstract According to classical evolutionary theory, sexual recombination can generate the variation necessary to adapt to changing environments and thereby confer an evolutionary advantage of sexual over asexual reproduction. Using the green alga, Chlamydomonas reinhardtii, we investigated the effect of a single sexual episode on adaptation of heterotrophic growth on different carbon sources. In an initial mixture of isolates, sex was induced and the resulting offspring constituted the sexual populations, along with any unmated vegetative cells; the unmated mixture of isolates represented the asexual populations. Mean and variance in division rates (i.e., fitness) were measured four times during approximately 50 generations of vegetative growth in the dark on all possible combinations of four carbon sources. Consistent with effects of recombination of epistatic genes in linkage disequilibrium, sexual populations initially had a higher variance in fitness, but their mean fitness was lower than that of asexual populations, possibly due to recombinational load. Subsequently, fitness of sexual populations exceeded that of asexual ones, but finally they regained parity in both mean and variance of fitness. Although recombination was not more effective on more complex substrates, these results generally support the idea that sex can accelerate adaptation to novel environments. [source] The maintenance of sex: host,parasite coevolution with density-dependent virulenceJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 10 2009C. M. LIVELY Abstract Why don't asexual females replace sexual females in most natural populations of eukaryotes? One promising explanation is that parasites could counter the reproductive advantages of asexual reproduction by exerting frequency-dependent selection against common clones (the Red Queen hypothesis). One apparent limitation of the Red Queen theory, however, is that parasites would seem to be required by theory to be highly virulent. In the present study, I present a population-dynamic view of competition between sexual females and asexual females that interact with co-evolving parasites. The results show that asexual populations have higher carrying capacities, and more unstable population dynamics, than sexual populations. The results also suggest that the spread of a clone into a sexual population could increase the effective parasite virulence as population density increases. This combination of parasite-mediated frequency-dependent selection, and density-dependent virulence, could lead to the coexistence of sexual and asexual reproductive strategies and the long-term persistence of sex. [source] Temporal dynamics of genotypic diversity reveal strong clonal selection in the aphid Myzus persicaeJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2006C. VORBURGER Abstract Parthenogenetic organisms often harbour substantial genotypic diversity. This diversity may be the result of recurrent formations of new clones, or it may be maintained by environmental heterogeneity acting on ecological differences among clones. In aphids, both processes may be important because obligate and cyclical parthenogens can form mixed populations. Using microsatellites, I analysed the temporal dynamics of clonal diversity in such a population of the aphid Myzus persicae over a 1-year period. The frequency distribution of clonal genotypes was very skewed, with many rare and few common clones. The relative frequencies of common clones underwent strong and rapid changes indicative of intense clonal selection. Differences in their host associations suggest that these shifts may partly be caused by changes in the abundance of annual host plants. Other selective factors of potential importance are also discussed. New, sexually produced genotypes made a minor contribution to clonal diversity, consistent with the observed heterozygote excess characteristic of predominantly asexual populations in M. persicae. [source] Genome size evolution and polyploidy in the Daphnia pulex complex (Cladocera: Daphniidae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009ROLAND VERGILINO Genome size was estimated in 49 clones of the Daphnia pulex complex from temperate and subarctic locations using flow cytometry and microsatellite DNA analyses. Significant genome size differences were found in diploid species belonging to the two genetically distinct groups (the pulicaria and the tenebrosa groups), with clones from the tenebrosa group having genome sizes 22% larger than those in the pulicaria group. Combined flow cytometry and microsatellite DNA analyses revealed that nearly all polyploid clones in the D. pulex complex are triploid and not tetraploid, as was previously suggested. Sequencing analyses of the ND5 gene to position clones in their respective clades within the D. pulex complex have uncovered three triploid clones of Daphnia middendorffiana with a D. pulex maternal parent. This result was unexpected because Daphnia pulicaria has always been identified as the maternal parent of these hybrid polyploid clones. Triploid clones likely owe their origins to interactions between sexual and asexual populations. Further interactions in the tenebrosa group have generated tetraploid clones but these events have been rare. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 68,79. [source] |