Ascending Projections (ascending + projection)

Distribution by Scientific Domains


Selected Abstracts


Evidence for a Role of the Parafascicular Nucleus of the Thalamus in the Control of Epileptic Seizures by the Superior Colliculus

EPILEPSIA, Issue 1 2005
Karine Nail-Boucherie
Summary:,Purpose: The aim of this study was to investigate whether the nucleus parafascicularis (Pf) of the thalamus could be a relay of the control of epileptic seizures by the superior colliculus (SC). The Pf is one of the main ascending projections of the SC, the disinhibition of which has been shown to suppress seizures in different animal models and has been proposed as the main relay of the nigral control of epilepsy. Methods: Rats with genetic absence seizures (generalized absence epilepsy rat from Strasbourg or GAERS) were used in this study. The effect of bilateral microinjection of picrotoxin, a ,-aminobutyric acid (GABA) antagonist, in the SC on the glutamate and GABA extracellular concentration within the Pf was first investigated by using microdialysis. In a second experiment, the effect of direct activation of Pf neurons on the occurrence of absence seizures was examined with microinjection of low doses of kainate, a glutamate agonist. Results: Bilateral injection of picrotoxin (33 pmol/side) in the SC suppressed spike-and-wave discharges for 20 min. This treatment resulted in an increase of glutamate but not GABA levels in the Pf during the same time course. Bilateral injection of kainate (35 pmol/side) into the Pf significantly suppressed spike-and-wave discharges for 20 min, whereas such injections were without effects when at least one site was located outside the Pf. Conclusions: These data suggest that glutamatergic projections to the Pf could be involved in the control of seizures by the SC. Disinhibition of these neurons could lead to seizure suppression and may be involved in the nigral control of epilepsy. [source]


Phylogeny of nucleus medianus of the posterior tubercle in rayfinned fishes

INTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 1 2009
R. Glenn NORTHCUTT
Abstract The brains of ray-finned fishes form a morphocline of increasing complexity, from cladistians through teleosts. This is particularly apparent in the posterior tubercle of the diencephalon. In cladistians, the posterior tubercle consists of a periventricular nucleus and a migrated nucleus medianus that is fused across the midline. In more advanced ray-finned fishes, such as gars and bowfins, the posterior tubercle comprises numerous additional migrated nuclei, termed the preglomerular complex, in addition to a more well developed nucleus medianus. In teleosts, the most derived ray-finned fishes, there is an even more elaborate preglomerular complex, but there is no recognizable nucleus medianus. In an attempt to explain the variation in the posterior tubercle of the diencephalon in ray-finned fishes, the immunohistochemistry and connections of nucleus medianus were examined in cladistians, gars and bowfins. In each of these taxa, nucleus medianus exhibits large numbers of calretinin-positive neurons and has ascending projections that terminate in several divisions of the pallium. Although teleosts, such as goldfish, also exhibit numerous cell groups in the posterior tubercle that are rich in calretinin, none of these cell groups has connections that are comparable to those of nucleus medianus in non-teleost ray-finned fishes. It is possible, therefore, that nucleus medianus was lost with the origin of teleosts. [source]


Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 17 2010
Kai Yan
Abstract Geckos use vocalizations for intraspecific communication, but little is known about the organization of their central auditory system. We therefore used antibodies against the calcium-binding proteins calretinin (CR), parvalbumin (PV), and calbindin-D28k (CB) to characterize the gecko auditory system. We also examined expression of both glutamic acid decarboxlase (GAD) and synaptic vesicle protein (SV2). Western blots showed that these antibodies are specific to gecko brain. All three calcium-binding proteins were expressed in the auditory nerve, and CR immunoreactivity labeled the first-order nuclei and delineated the terminal fields associated with the ascending projections from the first-order auditory nuclei. PV expression characterized the superior olivary nuclei, whereas GAD immunoreactivity characterized many neurons in the nucleus of the lateral lemniscus and some neurons in the torus semicircularis. In the auditory midbrain, the distribution of CR, PV, and CB characterized divisions within the central nucleus of the torus semicircularis. All three calcium-binding proteins were expressed in nucleus medialis of the thalamus. These expression patterns are similar to those described for other vertebrates. J. Comp. Neurol. 518:3409,3426, 2010. © 2010 Wiley-Liss, Inc. [source]


Conserved neurochemical pathways involved in hypothalamic control of energy homeostasis

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2007
Paul M. Forlano
Abstract The melanocortin system, which includes ,-melanocyte-stimulating hormone (,-MSH) and its endogenous antagonist, agouti-related protein (AgRP), is fundamental for the central control of energy homeostasis in mammals. Recent studies have demonstrated that many neuropeptides involved in the control of ingestive behavior and energy expenditure, including melanocortins, are also expressed and functional in teleost fishes. To test the hypothesis that the underlying neural pathways involved in energy homeostasis are conserved throughout vertebrate evolution, the neuroanatomical distribution of ,-MSH in relation to AgRP was mapped in a teleost (zebrafish, Danio rerio) by double-label immunocytochemistry. Zebrafish ,-MSH- and AgRP-immunoreactive (ir) cells are found in discrete populations in the ventral periventricular hypothalamus, the proposed arcuate homologue in teleosts. Major ascending projections are similar for both peptides, and dense ir-fibers innervate preoptic and ventral telencephalic nuclei homologous to paraventricular, lateral septal, and amygdala nuclei in mammals. Furthermore, ,-MSH and AgRP-ir somata and fibers are pronounced at 5 days post fertilization when yolk reserves are depleted and larvae begin to feed actively, which supports the functional significance of these peptides for feeding behavior. The conservation of melanocortin peptide function and projection pathways further support zebrafish as an excellent genetic model system to investigate basic mechanisms involved in the central regulation of energy homeostasis. J. Comp. Neurol. 505:235,248, 2007. © 2007 Wiley-Liss, Inc. [source]