Pine Trees (pine + tree)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Pine Trees

  • scots pine tree


  • Selected Abstracts


    The lethal effects of gamma irradiation on larvae of the Huhu beetle, Prionoplus reticularis: a potential quarantine treatment for New Zealand export pine trees

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2000
    Philip J. Lester
    Abstract Gamma irradiation was investigated as a possible method for disinfestation of huhu beetle larvae, Prionoplus reticularis White, in Pinus radiata D. Don. Larvae of four representative size classes were irradiated at six doses, and the lethal dose (LD99) calculated from mortality data 3 days and 10 days post treatment. All larval size classes showed a similar sensitivity to gamma irradiation and required 3677 Gray (Gy) and 2476 Gy for a LD99 3 and 10 days post-treatment, respectively. The penetration of gamma irradiation into pine wood was found to be lowest in freshly cut logs, and decreased linearly at a rate of 0.698 Gy mm,1 of wood. The penetration was greatest in wood that had been stored for 2 years, and decreased 0.512 Gy mm,1 of wood. These results are likely to be correlated with wood moisture content. Gamma irradiation appears to be a potential alternative method to fumigation for quarantine treatment of P. reticularis. [source]


    Phylogenetic diversity of non-nodulating Rhizobium associated with pine ectomycorrhizae

    FEMS MICROBIOLOGY ECOLOGY, Issue 3 2009
    Megumi Tanaka
    Abstract Most Rhizobium species described are symbionts that form nodules on legume roots; however, non-nodulating strains of Rhizobium are also widespread in nature. Unfortunately, knowledge of non-nodulating Rhizobium is quite limited compared with nodulating Rhizobium. Here, we studied the phylogenetic diversity of Rhizobium species that inhabit Japanese red pine roots (Pinus densiflora). Because fine roots of pine trees are usually colonized by ectomycorrhizal fungi in nature, we mainly used ectomycorrhizal root tips for bacterial isolation. Out of 1195 bacteria isolated from 75 independent root samples from the field and greenhouse experiments, 102 isolates were confirmed to be Rhizobium following partial 16S rRNA gene analysis. Rhizobium species were occasionally dominant in culturable bacterial communities, whereas no Rhizobium species were isolated from the soil itself. Molecular phylogenetic analyses using 16S rRNA, atpD, and recA gene sequences revealed that isolated Rhizobium strains were phylogenetically diverse and that several were distantly related to known Rhizobium species. Considering that a single species of pine is associated with unique and phylogenetically diverse Rhizobium populations, we should pay more attention to non-nodulating strains to better understand the diversity, ecology, and evolution of the genus Rhizobium and plant,Rhizobium associations. [source]


    Phytophthora cinnamomi and other fine root pathogens in north temperate pine forests

    FEMS MICROBIOLOGY LETTERS, Issue 1 2007
    Didier Chavarriaga
    Abstract A number of fine root pathogens, including Phytophthora cinnamomi, Pythium ultimum var. ultimum, Pythium undulatum, Pythium violae, Fusarium sp., and two incompletely identified Verticillium species, were isolated from soils taken from under Scots pine trees at five sites in north Scotland, including semi-natural forests and plantations. At least two root pathogens were recovered from each forest. Morphological and molecular data supported the identification of Phytophthora cinnamomi from three of the sites investigated. Isolates of Phytophthora cinnamomi, Pythium ultimum var. ultimum and an incompletely identified Fusarium sp. caused growth reductions of Scots pine seedlings, as determined by dry weight; the most virulent species were Phytophthora cinnamomi and Fusarium sp. The most severe disease symptoms were caused by a mixed inoculum containing Phytophthora cinnamomi, Pythium ultimum var. ultimum and Fusarium sp., or by the Fusarium isolate alone. These nonspecific pathogens may persist on the roots of understorey and herbaceous plants in the pine forests. [source]


    Resistance of Pinus contorta to the European race of Gremmeniella abietina

    FOREST PATHOLOGY, Issue 2 2006
    G. Laflamme
    Summary Pinus contorta seedlings, together with Pinus resinosa and Pinus banksiana seedlings, were planted adjacent to 25-year-old red pine trees infected by the European (EU) race of Gremmeniella abietina. Resistance to this race was assessed over 5 years. All P. resinosa seedlings were dead after that period while 65% of P. contorta and 86% of P. banksiana seedlings appeared resistant to the disease. The tip blight that occurred on P. contorta was slightly longer than that observed on P. banksiana. In microscopy, one, two, or even more suberized boundaries were seen to be initiated near the surface of the shoot at the base of healthy needles where they extended downward in the direction of the vascular cambium. Suberized boundaries occasionally crossed the xylem and joined together in the pith region to form continuous barriers around necrotic tissues. However, in most cases, these suberized barriers were not continuous across the shoot and compartmentalization was then completed by other barriers mainly constituted of parenchyma cells and xylem tracheids that accumulated phenolic compounds. Meristematic-like cells were observed adjacent to the necrophylactic periderm. Tissue regeneration, restoration of cambial activities and formation of traumatic resin canals also seemed to be associated with the defence system of P. contorta against the EU race of G. abietina. Résumé Des semis de Pinus contorta, de P. resinosa et de P. banksiana ont été plantés près de pins rouges âgés de 25 ans et infectés par la race européenne (EU) de Gremmeniella abietina. La résistance à cette race a étéévaluée sur une période de 5 ans. Tous les semis de P. resinosa sont morts après cette période alors que 65% des semis de P. contorta et 86% des semis de P. banksiana semblaient résister à la maladie. La brûlure à l'extrémité des pousses sur le P. contortaétait un peu plus longue que celle observée sur le P. banksiana. En microscopie, une, deux et même plusieurs couches de cellules subérisées se sont différenciées près de la surface des pousses à la base d'aiguilles saines et continuaient à progresser basipétalement en direction du cambium. Ces couches subérisées traversaient occasionnellement le xylème avant de fusionner près de la moelle pour former des barrières continues autour des tissus nécrosés. Toutefois, dans la plupart des cas, les barrières subérisées présentes dans les pousses étaient discontinues et le compartimentage était alors complété par d'autres barrières constituées de cellules de parenchyme et de trachéides ayant accumulé des composés phénoliques. Des cellules semblables à celles présentes dans les zones méristématiques furent observées près du périderme nécrophylactique. La présence de nouveaux tissus, le rétablissement de l'activité cambiale et la formation de canaux résinifères traumatiques semblaient aussi contribuer au système de défense de P. contorta contre la souche EU de G. abietina. Zusammenfassung In der Nachbarschaft von 25jährigen Pinus resinosa, die mit der europäischen Rasse von Gremmeniella abietina infiziert waren, wurden Sämlinge von Pinus contorta zusammen mit Sämlingen von Pinus resinosa und Pinus banksiana ausgepflanzt. Während fünf Jahren wurde die Resistenz gegenüber dieser Erregerrasse beobachtet. Am Ende des Beobachtungszeitraums waren alle P. resinosa -Sämlinge tot, während 65% der P. contorta und 86% der P. banksiana -Sämlinge überlebten. Die Nekrosen an der Triebspitze waren auf P. contorta etwas länger als bei P. banksiana. Mikroskopisch waren ein, zwei oder sogar mehr suberinisierte Abwehrzonen erkennbar, deren Bildung nahe der Trieboberfläche an der Basis gesunder Nadeln begann und die sich nach unten in Richtung auf das Kambium ausdehnten. Gelegentlich entstanden diese suberinisierten Zonen auch im Xylem und vereinigten sich im Mark miteinander, so dass eine geschlossene Barriere gegen die nekrotischen Gewebe entstand. In den meisten Fällen dehnten sich die suberinisierten Zonen aber nicht durch den ganzen Trieb aus und die Kompartimentierung wurde durch andere Barrieren ergänzt, die vorwiegend aus parenchymatischen Zellen und Tracheiden bestanden, in denen phenolische Stoffe akkumuliert wurden. Neben dem nekrophylaktischen Periderm wurden Zellen mit meristematischer Aktivität beobachtet. Daneben waren die Neubildung von Geweben, die Wiederherstellung der Kambiumaktivität und die Bildung traumatischer Harzkanäle offensichtlich bei der Abwehr von P. contorta gegen die EU-Rasse von G. abietina wirksam. [source]


    Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature

    FUNCTIONAL ECOLOGY, Issue 1 2005
    K. JOHNSEN
    Summary 1In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of mid-rotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol,1 atmospheric CO2 for 31 months. 2Tank CO2 was depleted in atmospheric 13C; foliage of elevated CO2 trees had ,13C of ,42·9, compared with ,29·1 for ambient CO2 trees. 3Roots 1 m from the base of elevated CO2 -grown trees had more negative ,13C relative to control trees, and this difference was detected, on average, up to 5·8, 3·7 and 3·7 m away from the trees for 0,2, 2,5 and >5 mm root-size classes, respectively. Non-fertilized tree roots extended as far as fertilized trees despite the fact that their above-ground biomass was less than half that of fertilized trees. 4These results are informative with respect to root sampling intensity and protocol, and the distances required between experimental manipulations to evaluate below-ground processes of independent treatments. 5Fine-root turnover has usually been estimated to range from weeks to 3 years, representing a major avenue of carbon flux. Using a mixing model we calculated that 0,2 mm roots had a mean residence time of 4·5 years indicating relatively slow fine-root turnover, a result that has major implications in modelling C cycling. [source]


    Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L.

    GLOBAL CHANGE BIOLOGY, Issue 3 2010
    DANIELLE A. WAY
    Abstract For herbaceous species, elevated CO2 often increases seed production but usually leads to decreased seed quality. However, the effects of increased atmospheric CO2 on tree fecundity remain uncertain, despite the importance of reproduction to the composition of future forests. We determined how seed quantity and quality differed for pine trees grown for 12 years in ambient and elevated (ambient+200 ,L L,1) CO2, at the Duke Forest free-air CO2 enrichment (FACE) site. We also compared annual reproductive effort with yearly measurements of aboveground net primary productivity (ANPP), precipitation (P), potential evapotranspiration (PET) and water availability [precipitation minus potential evapotranspiration (P,PET)] to investigate factors that may drive interannual variation in seed production. The number of mature, viable seeds doubled per unit basal area in high-CO2 plots from 1997 to 2008 (P<0.001), but there was no CO2 effect on mean seed mass, viability, or nutrient content. Interannual variation in seed production was positively related to ANPP, with a similar percentage of ANPP diverted to reproduction across years. Seed production was negatively related to PET (P<0.005) and positively correlated with water availability (P<0.05), but showed no relationship with precipitation (P=0.88). This study adds to the few findings that, unlike herbaceous crops, woody plants may benefit from future atmospheric CO2 by producing larger numbers of seeds without suffering degraded seed quality. Differential reproductive responses between functional groups and species could facilitate woody invasions or lead to changes in forest community composition as CO2 rises. [source]


    Distribution of early-arriving saproxylic beetles on standing dead Scots pine trees

    AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2010
    í Foit
    1The community composition of early-arriving saproxylic beetles on 80 standing and recently deceased Scots pine trees (Pinus sylvestris L.) was examined. 2In total, 34 species of saproxylic beetles were found, comprising at least four well-defined groups of species identified by correspondence analysis. 3Bark thickness, trunk/branch diameter and height above ground significantly affected community composition, with bark thickness being the most important factor. 4Overall, 13.7% of the variance in species composition was explained by section of the tree that was sampled, a variable that encompasses the three aforementioned parameters. [source]


    Feeding on roots in the humus layer by adult pine weevil, Hylobius abietis

    AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2006
    Kristina Wallertz
    Abstract 1,The consumption by adult pine weevil, Hylobius abietis, of the bark of roots present in the humus layer was assessed in a field study conducted in southern Sweden during two years (1998 and 2002). The study sites were divided into two areas: (i) a shelterwood where 80,100 mature Scots pine trees per hectare remained after cutting and (ii) a clearcut where no trees were left. 2,On average, 3741 m2 per hectare of root bark was present in the humus layer, of which 135 m2 was not coniferous but comprised species such as bilberry and broadleaved trees. 3,The mean area debarked by pine weevils was 2.9 m2 per hectare; 2.6 m2 of conifer roots and 0.3 m2 of bilberry roots. Roots of broadleaved trees were almost never consumed. No clear preferences for roots of a specific level of vitality were observed. 4,No consistent difference between the shelterwood and clearcut was found, either in the amount of root bark area available or in the extent of root feeding by pine weevil. 5,A weak negative correlation between debarked areas on roots and seedlings was found, indicating that root feeding may have reduced damage to seedlings. 6,It is concluded that conifer roots in the humus layer constitute a major food source for the pine weevil and can be utilized for a considerable period in both clearcuts and shelterwoods. [source]


    EVALUATION OF COASTAL PLAIN CONSERVATION BUFFERS USING THE RIPARIAN ECOSYSTEM MANAGEMENT MODEL,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2001
    Richard Lowrance
    ABSTRACT: Riparian buffers are increasingly important as watershed management tools and are cost-shared by programs such as Conservation Reserve that are part of the USDA Conservation Buffer Initiative. Riparian buffers as narrow as 4.6m (15ft) are eligible for cost-share by USDA. The Riparian Ecosystem Management Model (REMM) provides a tool to judge water quality improvement by buffers and to set design criteria for nutrient and sediment load reduction. REMM was used for a Coastal Plain site to simulate 14 different buffers ranging from 4.6 m to 51.8 m (15 to 170 ft) with three different types of vegetation (hardwood trees, pine trees, and perennial grass) with two water and nutrient loads. The load cases were low sediment/low nutrient-typical of a well managed agricultural field and low sediment/high nutrient-typical of liquid manure application to perennial forage crops. Simulations showed that the minimum width buffer (4.6 m) was inadequate for control of nutrients under either load case. The minimum width buffer that is eligible for cost share assistance on a field with known water quality problems (10.7 m, 35 ft) was projected to achieve at least 50 percent reduction of N, P, and sediment in the load cases simulated. [source]


    Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands

    JOURNAL OF VEGETATION SCIENCE, Issue 4 2000
    T.R. Lookingbill
    Abstract. European Mediterranean landscapes have undergone changes in structure in recent years as a result of widespread agricultural land abandonment and cessation of silvicultural regimes. Studies concerning the regeneration dynamics of dominant forest species have become critical to the prediction of future landscape trends in these changing forest stands. Quercus ilex (holm oak) and Q. pubescens (downy oak) are considered to be the terminal point of secondary succession in extensive areas of the Mediterranean region. Recent studies, however, have suggested the existence of recruitment bottlenecks in oak genet populations as a result of current management regimes. In this study, we present evidence of the successful establishment of Q. ilex and Q. pubescens in Pinus halepensis (Aleppo pine) woodlands. We investigate the distribution patterns and spatial relationships among oak recruits and resident pines. Established P. halepensis is randomly distributed throughout the study area. Oak seedlings are positively associated with pine trees, suggesting that P. halepensis individuals provide safe sites for oak genet recruitment. We show that spatial patterns of recruitment are in agreement with the general model of spatial segregation described for other Mediterranean plant communities, with seeder species colonizing large openings after disturbance, followed by a more aggregated recruitment of resprouter species. [source]


    Effects of predation and habitat structure on the population dynamics of house mice in large outdoor enclosures

    OIKOS, Issue 3 2005
    Anthony D. Arthur
    This paper examines the effect of different levels of protection from predation on feral house mice. Mice were contained in eight 50×50 m outdoor enclosures. Enclosures allowed access to a suite of freeliving vertebrate predators from the surrounding area, including feral foxes, feral cats and Australian raptors. A 10,15% cover of small, felled cypress pine trees was added in strips to low grassland to increase habitat complexity. Mice were not protected from predation when compared with low grassland pens, possibly because predators were able to focus their hunting activity in the strips. However, when felled trees were covered with wire netting, hence providing higher quality refuge, mouse populations achieved higher densities than in low grassland pens. A predator exclusion treatment was used to confirm the refuge effect was due to a reduction in the impact of predation. Survival rates under the different treatments were generally consistent with population level responses, with mice having lower survival in low grassland pens than in high refuge pens. This is the first study with mammals that confirms the importance of refuges from predators for prey populations. [source]


    Physiological girdling of pine trees via phloem chilling: proof of concept

    PLANT CELL & ENVIRONMENT, Issue 1 2007
    KURT JOHNSEN
    ABSTRACT Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root,mycorrhizal,soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both methods rapidly reduced soil CO2 efflux, and after approximately 10 days decreased net photosynthesis (Pn), the latter indicating feedback inhibition. Chilling decreased soil-soluble C, indicating that decreased soil CO2 efflux may have been mediated by a decrease in root C exudation that was rapidly respired by microbes. These effects were only observed in late summer/early autumn when above-ground growth was minimal, and not in the spring when above-ground growth was rapid. All of the effects were rapidly reversed when chilling was ceased. In fertilized plots, both chilling and physical girdling methods reduced soil CO2 efflux by approximately 8%. Physical girdling reduced soil CO2 efflux by 26% in non-fertilized plots. This work demonstrates that phloem chilling provides a non-destructive alternative to reducing the movement of recent photosynthate below the point of chilling to estimate C allocation below ground on large trees. [source]


    Relationship between stem CO2 efflux, stem sap velocity and xylem CO2 concentration in young loblolly pine trees

    PLANT CELL & ENVIRONMENT, Issue 8 2006
    CHRIS A. MAIER
    ABSTRACT We measured diel patterns of stem surface CO2 efflux (Es, µmol m,2 s,1), sap velocity (vs, mm s,1) and xylem CO2 concetration ([CO2]) (Xs, %) in 8-year-old loblolly pine trees during the spring to determine how vs and Xs influence Es. All trees showed a strong diel hysteresis between Es and stem temperature, where at a given temperature, Es was lower during the day than at night. Diel variations in temperature-independent Es were correlated with vs (R2 = 0.54), such that at maximum vs, Es was reduced between 18 and 40%. However, this correlation may not represent a cause-and-effect relationship. In a subset of trees, vs was artificially reduced by progressively removing the tree canopy. Reducing vs to near zero had no effect on Es and did not change the diel hysteretic response to temperature. Diel Xs tended to decrease with vs and increase with Es, however, in defoliated trees, large increases in Xs, when vs , 0, had no effect on Es. We conclude that at this time of the year, Es is driven primarily by respiration of cambium and phloem tissues and that sap flow and xylem transport of CO2 had no direct influence on Es. [source]


    Hydraulic responses to height growth in maritime pine trees

    PLANT CELL & ENVIRONMENT, Issue 9 2004
    S. DELZON
    ABSTRACT As trees grow taller, decreased xylem path conductance imposes a major constraint on plant water and carbon balance, and is thus a key factor underlying forest productivity decline with age. The responses of stomatal conductance, leaf area: sapwood area ratio (AL : AS) and soil,leaf water potential gradient (,,S,L) to height growth were investigated in maritime pine trees. Extensive measurements of in situ sap flow, stomatal conductance and (non-gravitational) needle water potential (L = ,L , ,wgh) were made during 2 years in a chronosequence of four even-aged stands, under both wet and dry soil conditions. Under wet soil conditions, L was systematically lower in taller trees on account of differences in gravitational potential. In contrast, under dry soil conditions, our measurements clearly showed that L was maintained above a minimum threshold value of ,2.0 MPa independently of tree height, thus limiting the range of compensatory change in ,,S,L. Although a decrease in the AL : AS ratio occurred with tree height, this compensation was not sufficient to prevent a decline in leaf-specific hydraulic conductance, KL (50% lower in 30 m trees than in 10 m trees). An associated decline in stomatal conductance with tree height thus occurred to maintain a balance between water supply and demand. Both the increased investment in non-productive versus productive tissues (AS : AL) and stomatal closure may have contributed to the observed decrease in tree growth efficiency with increasing tree height (by a factor of three from smallest to tallest trees), although other growth-limiting responses (e.g. soil nutrient sequestration, increased respiratory costs) cannot be excluded. [source]


    Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year

    PLANT CELL & ENVIRONMENT, Issue 8 2003
    BHUPINDERPAL-SINGH
    ABSTRACT Limitations in available techniques to separate autotrophic (root) and soil heterotrophic respiration have hampered the understanding of forest C cycling. The former is here defined as respiration by roots, their associated mycorrhizal fungi and other micro-organisms in the rhizosphere directly dependent on labile C compounds leaked from roots. In order to separate the autotrophic and heterotrophic components of soil respiration, all Scots pine trees in 900 m2 plots were girdled to instantaneously terminate the supply of current photosynthates from the tree canopy to roots. Högberg et al. (Nature 411, 789,792, 2001) reported that autotrophic activity contributed up to 56% of total soil respiration during the first summer of this experiment. They also found that mobilization of stored starch (and likely also sugars) in roots after girdling caused an increased apparent heterotrophic respiration on girdled plots. Herein a transient increase in the ,13C of soil CO2 efflux after girdling, thought to be due to decomposition of 13C-enriched ectomycorrhizal mycelium and root starch and sugar reserves, is reported. In the second year after girdling, when starch reserves of girdled tree roots were exhausted, calculated root respiration increased up to 65% of total soil CO2 efflux. It is suggested that this estimate of its contribution to soil respiration is more precise than the previous based on one year of observation. Heterotrophic respiration declined in response to a 20-day-long 6 °C decline in soil temperature during the second summer, whereas root respiration did not decline. This did not support the idea that root respiration should be more sensitive to variations in soil temperature. It is suggested that above-ground photosynthetic activity and allocation patterns of recent photosynthates to roots should be considered in models of responses of forest C balances to global climate change. [source]


    A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress

    PLANT CELL & ENVIRONMENT, Issue 11 2002
    Q. Gao
    Abstract A model of stomatal conductance was developed to relate plant transpiration rate to photosynthetic active radiation (PAR), vapour pressure deficit and soil water potential. Parameters of the model include sensitivity of osmotic potential of guard cells to photosynthetic active radiation, elastic modulus of guard cell structure, soil-to-leaf conductance and osmotic potential of guard cells at zero PAR. The model was applied to field observations on three functional types that include 11 species in subtropical southern China. Non-linear statistical regression was used to obtain parameters of the model. The result indicated that the model was capable of predicting stomatal conductance of all the 11 species and three functional types under wide ranges of environmental conditions. Major conclusions included that coniferous trees and shrubs were more tolerant for and resistant to soil water stress than broad-leaf trees due to their lower osmotic potential, lignified guard cell walls, and sunken and suspended guard cell structure under subsidiary epidermal cells. Mid-day depression in transpiration and photosynthesis of pines may be explained by decreased stomatal conductance under a large vapour pressure deficit. Stomatal conductance of pine trees was more strongly affected by vapour pressure deficit than that of other species because of their small soil-to-leaf conductance, which is explainable in terms of xylem tracheids in conifer trees. Tracheids transport water by means of small pit-pairs in their side walls, and are much less efficient than the end-perforated vessel members in broad-leaf xylem systems. These conclusions remain hypothetical until direct measurements of these parameters are available. [source]


    Evaluating different soil and plant hydraulic constraints on tree function using a model and sap flow data from ponderosa pine

    PLANT CELL & ENVIRONMENT, Issue 7 2001
    M. Williams
    Relationships between tree size and physiological processes such as transpiration may have important implications for plant and ecosystem function, but as yet are poorly understood. We used a process-based model of the soil,plant,atmosphere continuum to investigate patterns of whole-tree sap flow in ponderosa pine trees of different size and age (36 m and ,250 years versus 13 m and 10,50 years) over a developing summer drought. We examined three different hypothetical controls on hydraulic resistance, and found that size-related differences in sap flow could be best explained by absolute differences in plant resistance related to path length (hypothesis 1) rather than through different dynamic relationships between plant resistance and leaf water potential (hypothesis 2), or alterations in rates of cumulative inducement and repair of cavitation (hypothesis 3). Reductions in sap flow over time could be best explained by rising soil,root resistance (hypothesis 1), rather than by a combination of rising plant and soil,root resistance (hypothesis 2), or by rising plant resistance alone (hypothesis 3). Comparing hourly predictions with observed sap flow, we found that a direct relationship between plant resistance and leaf water potential (hypothesis 2) led to unrealistic bimodal patterns of sap flow within a day. Explaining seasonal reduction in sap flow purely through rising plant resistance (hypothesis 3) was effective but failed to explain the observed decline in pre-dawn leaf water potential for small trees. Thus, hypothesis 1 was best corroborated. A sensitivity analysis revealed a significant difference in the response to drought-relieving rains; precipitation induced a strong recovery in sap flow in the hypothetical case of limiting soil,root resistance (hypothesis 1), and an insignificant response in the case of limiting plant resistance (hypothesis 3). Longer term monitoring and manipulation experiments are thus likely to resolve the uncertainties in hydraulic constraints on plant function. [source]


    Effects of growth and virulence of associated blue-stain fungi on host colonization behaviour of the pine shoot beetles Tomicus minor and T. piniperda

    PLANT PATHOLOGY, Issue 1 2001
    H. Solheim
    The pine shoot beetles Tomicus minor and T. piniperda are common in the Nordic countries. Of these, T. piniperda may attack and kill living but severely stressed trees, whereas T. minor has never been reported to be individually responsible for killing live trees. Both species are associated with blue-stain fungi: T. minor with Ophiostoma canum and T. piniperda with Leptographium wingfieldii and Ophiostoma minus. The growth of these fungi was studied in phloem and sapwood of live Scots pine trees, on malt agar, and on malt agar under oxygen-deficient conditions. Leptographium wingfieldii was more virulent (i.e. caused more extensive host symptoms) grew more quickly on malt agar, and was less affected by oxygen-deficient growth conditions than either O. minus or O. canum. Ophiostoma canum was least virulent. In low-density inoculations it induced lesions similar to those induced by sterile control inoculations; it grew very slowly on malt agar and stopped growing after ,30 mm under oxygen-deficient conditions. Ophiostoma minus was intermediate in all respects. The different virulence of the blue-stain fungi associated with the two pine shoot beetles may explain the lower level of aggressiveness in T. minor. [source]


    Effects of fertilization on understorey vegetation in a Norwegian Pinus sylvestris forest

    APPLIED VEGETATION SCIENCE, Issue 2 2002
    Astrid Skrindo
    Abstract. Boreal coniferous forests have been impacted by long distance airborne pollutant deposition for most of the 20th century. Changes in forest understorey vegetation attributable to N-deposition have been observed in southern Sweden, but not so far in southern Norway. We recorded the quantity of all species of vascular plants, bryophytes and lichens in 144 plots in a fertilization experiment in a 35-yr old Pinus sylvestris forest in Aust Agder County, southernNorway initiated 6 yr before our study. Each plot represented a combination of three levels of nitrogen, two levels of magnesium and two levels of phosphorus addition. Effects of fertilization on species quantity were tested by Kruskal-Wallis one-way analysis by ranks. For vascular plants, only small and hardly significant differences were found between treatments and control. Significant negative effects of N-fertilization were found on both mosses and lichens. To some extent, these effects could be attributed to direct effects of application of the fertilizer, but were more likely to be due to a negative feedback response to the faster growth of pine trees in fertilized stands, reducing throughfall precipitation and increasing litter fall. Significant differences between Mg- and P-fertilized sites and respective controls were found for too few species to be likely to represent an overall trend. [source]