Home About us Contact | |||
Pilot Whales (pilot + whale)
Selected AbstractsWorldwide mitochondrial DNA diversity and phylogeography of pilot whales (Globicephala spp.)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009MARC OREMUS Pilot whales (Globicephala spp.) provide an interesting example of recently diverged oceanic species with a complex evolutionary history. The two species have wide but largely non-overlapping ranges. Globicephala melas (long-finned pilot whale; LFPW) has an antitropical distribution and is found in the cold-temperate waters of the North Atlantic and Southern Hemisphere, whereas Globicephala macrorhynchus (short-finned pilot whale; SFPW) has a circumglobal distribution and is found mainly in the tropics and subtropics. To investigate pilot whale evolution and biogeography, we analysed worldwide population structure using mitochondrial DNA (mtDNA) control region sequences (up to 620 bp) from a variety of sources (LFPW = 643; SFPW = 150), including strandings in New Zealand and Tasmania, and whale-meat products purchased on the markets of Japan and Korea. Phylogenetic reconstructions failed to support a reciprocal monophyly of the two species, despite six diagnostic substitutions, possibly because of incomplete lineage sorting or inadequate phylogenetic information. Both species had low haplotype and nucleotide diversity compared to other abundant widespread cetaceans (LFPW, , = 0.35%; SFPW, , = 0.87%) but showed strong mtDNA differentiation between oceanic basins. Strong levels of structuring were also found at the regional level. In LFPW, phylogeographic patterns were suggestive either of a recent demographic expansion or selective sweep acting on the mtDNA. For SFPW, the waters around Japan appear to represent a centre of diversity, with two genetically-distinct forms, as well as a third population of unknown origin. The presence of multiple unique haplotypes among SFPW from South Japan, together with previously documented morphological and ecological differences, suggests that the southern form represents a distinct subspecies and/or evolutionary significant unit. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 729,744. [source] To breathe or not to breathe: optimal strategies for finding prey in a dark, three-dimensional environmentJOURNAL OF ANIMAL ECOLOGY, Issue 5 2008MARK HINDELL The use of sophisticated telemetry logging devices has revealed that short-finned pilot whales employ energetic sprints to chase down their deep-dwelling prey. These sprints are costly in terms of energy, and therefore oxygen, which is a valuable resource for an animal that has to hold its breath while hunting. This finding highlights the challenges faced by ecologists when trying to develop foraging models for marine predators because many of the key parameters, such as movements in three dimensions, marine prey fields and metabolic adaptations of diving animals, remain largely unknown. [source] Mandibular fractures in short-finned pilot whales, Globicephala macrorhynchusMARINE MAMMAL SCIENCE, Issue 1 2010Mollie Sue Oremland Abstract This study's objective was to investigate mandibular fractures in 50 short-finned pilot whales, Globicephala macrorhynchus, from two mass strandings. Based on current theories that this species is sexually dimorphic and polygynous, hypotheses were: (1) males should suffer more frequent or more substantial mandibular fractures than should females, and (2) fracture occurrence should increase with male reproductive maturity and potential correlates of maturity, such as age and length. Fractures were described and correlated with physical characteristics to infer possible explanations for injuries. Mandibular fractures were surprisingly common in males and females, being found in more than half of the animals examined (27/50, or 54% overall; 17/36 or 47% of females and 10/14 or 71% of males). Length was the only correlate of fracture presence; the proportion of animals showing evidence of fracture increased with length. These results offer some support to initial hypotheses, but there must be another set of consequences that contribute to mandibular fractures in females. A combination of intra- and interspecific interactions and life history characteristics may be responsible for fractures. Further research from a larger sample of this and other cetacean species are suggested to help elucidate both the causes and implications of mandibular fractures. [source] Survival rate, abundance, and residency of long-finned pilot whales in the Strait of GibraltarMARINE MAMMAL SCIENCE, Issue 3 2009P. Verborgh Abstract Long-finned pilot whales in the Strait of Gibraltar are distributed over the main shipping routes. This exposes them to risks of collisions and probable acoustic and physical disturbance. This species is also the target of whale-watching operations. The aim of this study was to estimate the annual population size, survival rate, and population growth rate of pilot whales occurring in the Strait and their inter-annual variation using photo-identification. A robust design was used to estimate all three parameters. A total of 10,784 individual pilot whale fins were photographed and analyzed. The population size estimation in summer ranged from a low of 147 individuals in 1999 to a high of 265 individuals in 2003. The annual population growth rate was estimated from mark recapture models to be 5.5%. The survival rate of adults was estimated at 0.982 (95% CI: 0.955,0.993). The same individuals have been observed between years. This suggests that this population is resident in the Strait, at least during summer. This study provides baseline knowledge prior to a predicted increase in shipping traffic throughout the main foraging area due to the opening in 2007 of a major shipping harbor along the Moroccan coast of the Strait. [source] Stomach contents of mass-stranded short-finned pilot whales (Globicephala macrorhynchus) from North CarolinaMARINE MAMMAL SCIENCE, Issue 2 2008Vanessa J. Mintzer Abstract We examined the stomach contents of 27 short-finned pilot whales (Globicephala macrorhynchus) that mass stranded on the North Carolina coast on 15 January 2005. Eleven whales had prey parts in their forestomachs. We used frequency of occurrence and numerical abundance to assess the relative importance of prey. Brachioteuthis riisei (numerical abundance 28%), an oceanic species, was the most important cephalopod prey, but Taonius pavo (12%) and Histioteuthis reversa (9%) also represented a substantial part of the diet. A large number of otoliths belonging to the fish Scopelogadus beanii were present (25%). These results differ from reports of the stomach contents of short-finned pilot whales from the Pacific coast in which neritic species dominate the diet. Our findings also suggest that there is a considerable difference between the diet of short- and long-finned pilot whales (Globicephala melas) in the western North Atlantic. The latter feed predominantly on the long-finned squid (Loligo pealei) whereas the former feed on deep-water species. Our results indicate the whales fed primarily off the continental shelf prior to stranding. [source] ACOUSTIC IDENTIFICATION OF NINE DELPHINID SPECIES IN THE EASTERN TROPICAL PACIFIC OCEANMARINE MAMMAL SCIENCE, Issue 1 2003Julie N. Oswald Abstract Acoustic methods may improve the ability to identify cetacean species during shipboard surveys. Whistles were recorded from nine odontocete species in the eastern tropical Pacific to determine how reliably these vocalizations can be classified to species based on simple spectrographic measurements. Twelve variables were measured from each whistle (n = 908). Parametric multivariate discriminant function analysis (DFA) correctly classified 41.1% of whistles to species. Non-parametric classification and regression tree (CART) analysis resulted in 51.4% correct classification. Striped dolphin whistles were most difficult to classify. Whistles of bottlenose dolphins, false killer whales, and pilot whales were most distinctive. Correct classification scores may be improved by adding prior probabilities that reflect species distribution to classification models, by measuring alternative whistle variables, using alternative classification techniques, and by localizing vocalizing dolphins when collecting data for classification models. [source] Worldwide mitochondrial DNA diversity and phylogeography of pilot whales (Globicephala spp.)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009MARC OREMUS Pilot whales (Globicephala spp.) provide an interesting example of recently diverged oceanic species with a complex evolutionary history. The two species have wide but largely non-overlapping ranges. Globicephala melas (long-finned pilot whale; LFPW) has an antitropical distribution and is found in the cold-temperate waters of the North Atlantic and Southern Hemisphere, whereas Globicephala macrorhynchus (short-finned pilot whale; SFPW) has a circumglobal distribution and is found mainly in the tropics and subtropics. To investigate pilot whale evolution and biogeography, we analysed worldwide population structure using mitochondrial DNA (mtDNA) control region sequences (up to 620 bp) from a variety of sources (LFPW = 643; SFPW = 150), including strandings in New Zealand and Tasmania, and whale-meat products purchased on the markets of Japan and Korea. Phylogenetic reconstructions failed to support a reciprocal monophyly of the two species, despite six diagnostic substitutions, possibly because of incomplete lineage sorting or inadequate phylogenetic information. Both species had low haplotype and nucleotide diversity compared to other abundant widespread cetaceans (LFPW, , = 0.35%; SFPW, , = 0.87%) but showed strong mtDNA differentiation between oceanic basins. Strong levels of structuring were also found at the regional level. In LFPW, phylogeographic patterns were suggestive either of a recent demographic expansion or selective sweep acting on the mtDNA. For SFPW, the waters around Japan appear to represent a centre of diversity, with two genetically-distinct forms, as well as a third population of unknown origin. The presence of multiple unique haplotypes among SFPW from South Japan, together with previously documented morphological and ecological differences, suggests that the southern form represents a distinct subspecies and/or evolutionary significant unit. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 729,744. [source] |