Piedmont Streams (piedmont + stream)

Distribution by Scientific Domains


Selected Abstracts


Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2010
Leslie L. Orzetti
Orzetti, Leslie L., R. Christian Jones, and Robert F. Murphy, 2010. Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):473-485. DOI: 10.1111/j.1752-1688.2009.00414.x Abstract:, This study tested the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining habitat, selected water quality variables, and benthic macroinvertebrate community metrics in 30 streams with buffers ranging from zero to greater than 50 years of age. To assess water quality we measured in situ parameters (temperature, dissolved oxygen, and conductivity) and laboratory-analyzed grab samples (soluble reactive phosphorus, total phosphorus, nitrate, ammonium, and total suspended solids). Habitat conditions were scored using the Environmental Protection Agency Rapid Bioassessment Protocols for high gradient streams. Benthic macroinvertebrates were quantified using pooled riffle/run kick samples. Results showed that habitat, water quality, and benthic macroinvertebrate metrics generally improved with age of restored buffer. Habitat scores appeared to stabilize between 10 and 15 years of age and were driven mostly by epifaunal substrate availability, sinuosity, embeddedness, and velocity depth regime. Benthic invertebrate taxa richness, percent Ephemeroptera, Plecoptera, Trichoptera minus hydropsychids (%EPT minus H), % Ephemeroptera, and the Family Biotic Index were among the metrics which improved with age of buffer zone. Results are consistent with the hypothesis that forest riparian buffers enhance instream habitat, water quality, and resulting benthic macroinvertebrate communities with noticeable improvements occurring within 5-10 years postrestoration, leading to conditions approaching those of long established buffers within 10-15 years of restoration. [source]


Reach-scale geomorphology affects organic matter and consumer ,13C in a forested Piedmont stream

FRESHWATER BIOLOGY, Issue 6 2007
D. M. WALTERS
Summary 1. We investigated the spatial (longitudinal position and reach geomorphology) and seasonal (spring and autumn) influences on the variation of ,13C among organic matter sources and consumers in a forested Piedmont river, South Carolina, U.S.A. 2. Six sites were sampled along a continuum and varied in basin area from approximately 30 to 300 km2. Sites fell into two geomorphic categories (i) high-gradient, rock bed (,rock') or (ii) low-gradient, sand bed (,sand') sites. 3. Variation in ,13C was more strongly related to reach geomorphology than longitudinal position. ,13C of biofilm and consumers was consistently enriched at rock sites. Leaf litter (i.e. coarse particulate organic matter, CPOM) ,13C did not vary with bed type. There was significant ,13C enrichment at rock sites for biofilm, seston, fine benthic organic matter (FBOM), and eight of nine consumer trophic guilds (e.g. grazing invertebrates, insectivorous fishes). ,13C of biofilm and four trophic guilds was also positively correlated with drainage area, but the magnitude of enrichment was less than between bed types. 4. ,13C was generally enriched in spring, but this varied among organic matter types, consumers, and by bed type. CPOM and seston were enriched in spring, FBOM was enriched in autumn, and biofilm showed no trend. Five consumer guilds were enriched in spring, and only one fish guild, generalised carnivores, showed enrichment of muscle tissue in autumn. 5. Consumer ,13C enrichment at rock sites suggests greater reliance on algal carbon than for consumers at sand sites, but we also found ,13C enrichment of biofilm at rock sites. Thus, differences in consumer ,13C between bed types could be related to (i) increased consumption of biofilm at rock compared with sand sites, or (ii) consumption of biofilm at rock sites that is enriched relative to biofilm at sand sites or (iii) both mechanisms. 6. ,13C signatures in local food webs appear to respond to processes operating at multiple spatial scales. Overall downstream enrichment of biofilm and consumers was disrupted by strong local effects related to bed morphology. These results suggest that human alteration of channel habitat will have corresponding effects on stream food webs, as assessed by changes in ,13C. [source]


Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach

HYDROLOGICAL PROCESSES, Issue 8 2001
Seth Rose
Abstract For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less-urbanized and non-urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: in the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline-rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less-urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: values were 0·54 for the two Blue Ridge streams, 0·37 for the four middle Piedmont streams (near Atlanta), and 0·28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater than peak flows for the other streams. The storm recession period for the urban stream was 1,2 days less than that for the other streams and the recession was characterized by a 2-day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less-urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater recharge areas. The timing of daily or monthly groundwater-level fluctuations was similar annually in each well, reflecting the seasonal recharge. Although water-level monitoring only began in the 1980s for the two urban wells, water levels displayed a notable decline compared with non-urban wells since then; this is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Ontogenetic Microhabitat Shifts in the Bullhead, Cottus gobio L.,in a Fast Flowing Stream

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2005
Milène Legalle
Abstract We investigated differences in microhabitat preference curves for bullheads, Cottus gobio L., of different size-classes during low flow periods, and evaluated the influence of such differences on habitat use through Weighted Usable Area (WUA) predictions in relation to river flow in a piedmont stream in Southwest France. Water depth, current velocity, and substratum composition were used to calculate proportional use values for each size-class (SC), and to quantify size-specific microhabitat preferences. Bullhead used non-cohesive and coarse mineral particles (pebbles, cobbles, boulders), but there was a spatial segregation of individuals from different size classes (SC1,SC4). Smaller bullhead (SC1, total length <60 mm) took refuge under cobbles, significantly preferred shallower areas, and were less prone to select high current velocities than larger bullhead (SC 2 to 4, >60 mm), the latter occurring below (or under) the largest particles, where current velocity is weakened and sand accumulates. SC1 bullhead had a more restricted range for each habitat descriptors, and were thus likely to require a more specific habitat type than other bullhead. The maximum WUA values and the related preferred discharges (0.15,0.75 m3 s,1) depended on the considered size-class. Our results suggest that ontogenetic niche shifts may play a role in the structure and dynamics of populations, by adjusting species' requirements to the spatial and temporal dynamics of environmental conditions, including abiotic and biotic conditions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]