Pick Bodies (pick + body)

Distribution by Scientific Domains


Selected Abstracts


Clinical entity of frontotemporal dementia with motor neuron disease

NEUROPATHOLOGY, Issue 6 2009
Yoshio Mitsuyama
Non-Alzheimer-type dementias occur in association with a variety of pathological conditions that include a group of diseases characterized by atrophy of the frontal and temporal lobes. Frontotemporal dementia (FTD) is a clinical entity that comprises at least two distinct diseases: Pick's disease with Pick bodies and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). The vast majority of FTLD-U is now referred to as FTLD-TDP, following the recent discovery of TAR DNA-binding protein of 43 kDa (TDP-43) as the major constituent of the ubiquitin-positive inclusions. FTLD-TDP, but not Pick's disease with Pick bodies, is often associated with motor neuron disease (MND). MND is a group of diseases in which the central nervous system lesions were long believed to be confined to the motor neuron system. In other words, MND was not considered to be associated with other neurological symptoms such as dementia. Nevertheless, more than 200 FTD cases associated with clinical MND have been reported in Japan since 1964. Neuropathologically, MND in such FTD cases was essentially similar to MND in cases without dementia. The combination of FTD and MND was so characteristic that we considered these cases comprise a unique clinicopathological subgroup of FTD. FTD with MND and the classical MND without dementia share the occurrence of ubiquitinated TDP-43-positive inclusions, a finding that could be a key to unlock the pathological backgrounds of both diseases. [source]


Pick's disease with Pick bodies: An unusual autopsy case showing degeneration of the pontine nucleus, dentate nucleus, Clarke's column, and lower motor neuron

NEUROPATHOLOGY, Issue 1 2007
Tatsuro Oda
We report a 51-year-old female with Pick's disease with Pick bodies (PDPB) showing a brainweight of 530 g. This case was considered to be a very rare case of PDPB, in which the lesion developed in the temporal and frontal lobes and later spread to the parietal lobe, occipital lobe, brainstem, cerebellum and spinal cord. This case showed very atypical clinicopathological findings. Clinically, bulging eyes and myoclonus were observed. Neuropathologically, Pick bodies were widely distributed beyond the usual distribution areas to the parietal cortices, occipital cortices, dentate nuclei, motor neuron nuclei in the brain stem, and spinal cord. The atypical clinical symptoms and the widespread neuropathological abnormalities observed in this case seem to represent an extremely extended form of PDPB. [source]


Pick's disease with Pick bodies combined with progressive supranuclear palsy without tuft-shaped astrocytes: A clinical, neuroradiologic and pathological study of an autopsied case

NEUROPATHOLOGY, Issue 3 2006
Lu-Ning Wang
We report clinical, neuroradiologic features, and neuropathologic findings of a 76-year-old man with coexistent Pick's disease and progressive supranuclear palsy. The patient presented with loss of recent memory, abnormal behavior and change in personality at the age of 60. The symptoms were progressive. Three years later, repetitive or compulsive behavior became prominent. About 9 years after onset, he had difficulty moving and became bed-ridden because of a fracture of his left leg. His condition gradually deteriorated and he developed mutism and became vegetative. The patient died from pneumonia 16 years after the onset of symptoms. Serial MRI scans showed progressive cortex atrophy, especially in the bilateral frontal and temporal lobes. Macroscopic inspection showed severe atrophy of the whole brain, including cerebrum, brainstem and cerebellum. Microscopic observations showed extensive superficial spongiosis and severe neuronal loss with gliosis in the second and third cortical layers in the frontal, temporal and parietal cortex. There were Pick cells and argyrophilic Pick bodies, which were tau- and ubiquitin-positive in neurons of layers II,III of the above-mentioned cortex. Numerous argyrophilic Pick bodies were observed in the hippocampus, especially in the dentate fascia. In addition, moderate to severe loss of neurons was found with gliosis and a lot of Gallyas/tau-positive globus neurofibrillary tangles in the caudate nucleus, globus pallidus, thalamus, substantia nigra, locus coeruleus and dentate nucleus. Numerous thorned-astrocytes and coiled bodies but no-tuft shaped astrocytes were noted in the basal ganglion, brainstem and cerebellar white matter. In conclusion, these histopathological features were compatible with classical Pick's disease and coexistence with progressive supranuclear palsy without tuft-shaped astrocytes. [source]


Comparison of extent of tau pathology in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), frontotemporal lobar degeneration with Pick bodies and early onset Alzheimer's disease

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2006
A.-M. Shiarli
In order to gain insight into the pathogenesis of frontotemporal lobar degeneration (FTLD), the mean tau load in frontal cortex was compared in 34 patients with frontotemporal dementia linked to chromosome 17 (FTDP-17) with 12 different mutations in the tau gene (MAPT), 11 patients with sporadic FTLD with Pick bodies and 25 patients with early onset Alzheimer's disease (EOAD). Tau load was determined, as percentage of tissue occupied by stained product, by image analysis of immunohistochemically stained sections using the phospho-dependent antibodies AT8, AT100 and AT180. With AT8 and AT180 antibodies, the amount of tau was significantly (P < 0.001 in each instance) less than that in EOAD for both FTDP-17 (8.5% and 10.0% respectively) and sporadic FTLD with Pick bodies (16.1% and 10.0% respectively). With AT100, the amount of tau detected in FTDP-17 was 54% (P < 0.001) of that detected in EOAD, but no tau was detected in sporadic FTLD with Pick bodies using this particular antibody. The amount of insoluble tau deposited within the brain in FTDP-17 did not depend in any systematic way upon where the MAPT mutation was topographically located within the gene, or on the physiological or structural change generated by the mutation, regardless of which anti-tau antibody was used. Not only does the amount of tau deposited in the brain differ between the three disorders, but the pattern of phosphorylation of tau also varies according to disease. These findings raise important questions relating to the role of aggregated tau in neurodegeneration , whether this represents an adaptive response which promotes the survival of neurones, or whether it is a detrimental change that directly, or indirectly, brings about the demize of the affected cell. [source]


Phosphorylated Map Kinase (ERK1, ERK2) Expression is Associated with Early Tau Deposition in Neurones and Glial Cells, but not with Increased Nuclear DNA Vulnerability and Cell Death, in Alzheimer Disease, Pick's Disease, Progressive Supranuclear Palsy and Corticobasal Degeneration

BRAIN PATHOLOGY, Issue 2 2001
I. Ferrer
Abnormal tau phosphorylation and deposition in neurones and glial cells is one of the major features in tau pathies. The present study examines the involvement of the Ras/MEK/ERK pathway of tau phosphorylation in Alzheimer disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), by Western blotting, single and double-labelling immunohistochemistry, and p21Ras activation assay. Since this pathway is also activated in several paradigms of cell death and cell survival, activated ERK expression is also analysed with double-labelling immunohistochemistry and in situ end-labelling of nuclear DNA fragmentation to visualise activated ERK in cells with increased nuclear DNA vulnerability. The MEK1 antibody recognises one band of 45 kD that identifies phosphorylation-independent MEK1, whose expression levels are not modified in diseased brains. The ERK antibody recognises one band of 42 kD corresponding to the molecular weight of phosphorylation-independent ERK2; the expression levels, as well as the immunoreactivity of ERK in individual cells, is not changed in AD, PiD, PSP and CBD. The antibody MAPK-P distinguishes two bands of 44 kD and 42 kD that detect phosphorylated ERK1 and ERK2. MAPK-P expression levels, as seen with Western blotting, are markedly increased in AD, PiD, PSP and CBD. Moreover, immunohistochemistry discloses granular precipitates in the cytoplasm of neurones in AD, mainly in a subpopulation of neurones exhibiting early tau deposition, whereas neurones with developed neurofibrillary tangles are less commonly immunostained. MAPK-P also decorates neurones with Pick bodies in PiD, early tau deposition in neurones in PSP and CBD, and cortical achromatic neurones in CBD. In addition, strong MAPK-P immunoreactivity is found in large numbers of tau -positive glial cells in PSP and CBD, as seen with double-labelling immunohistochemistry. Yet no co-localisation of enhanced phosphorylated ERK immunoreactivity and nuclear DNA fragmentation is found in AD, PiD, PSP and CBD. Finally, activated Ras expression levels are increased in AD cases when compared with controls. These results demonstrate increased phosphorylated (active) ERK expression in association with early tau deposition in neurones and glial cells in taupathies, and suggest activated Ras as the upstream activator of the MEK/ERK pathway of tau phosphorylation in AD. [source]


Motor neuron disease group accompanied by inclusions of unidentified protein signaled by ubiquitin

NEUROPATHOLOGY, Issue 2 2004
Kenji Ikeda
Peculiar tau-negative, ubiquitin-positive inclusions appear in dementia with ALS (ALS-D), the majority of lobar atrophy (Pick's disease) without Pick body and a small portion of ALS. Another common neuropathological lesion in these diseases is the motor neuron involvement with the degenerative processes. The lower motor neuron is predominantly involved in ALS and ALS-D while the upper motor neuron is predominantly involved, but in varying degrees in a considerable number of patients with lobar atrophy that lack Pick bodies. There are, however, some points that have yet to be elucidated. The boundary between these diseases is not always clear and a significant number of cases are considered to be the transitional form. Lobar atrophy without Pick body seems to be a heterogeneous disease group. The nature of ubiquitin inclusions also needs to be clarified. Nevertheless, we postulate that these diseases are grouped with the concept of motor neuron disease-inclusion dementia. [source]