Home About us Contact | |||
PI Activity (pi + activity)
Selected AbstractsThe Kölliker-Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off-switch and upper airway resistance in ratEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006Mathias Dutschmann Abstract Lesion or pharmacological manipulation of the dorsolateral pons can transform the breathing pattern to apneusis (pathological prolonged inspiration). Apneusis reflects a disturbed inspiratory off-switch mechanism (IOS) leading to a delayed phase transition from inspiration to expiration. Under intact conditions the IOS is irreversibly mediated via activation of postinspiratory (PI) neurons within the respiratory network. In parallel, populations of laryngeal premotoneurons manifest the IOS by a brief glottal constriction during the PI phase. We investigated effects of pontine excitation (glutamate injection) or temporary lesion after injection of a GABA-receptor agonist (isoguvacine) on the strength of PI-pool activity determined from respiratory motor outputs or kinesiological measurements of laryngeal resistance in a perfused brainstem preparation. Glutamate microinjections into distinct parts of the pontine Kölliker-Fuse nucleus (KF) evoked a tonic excitation of PI-motor activity or sustained laryngeal constriction accompanied by prolongation of the expiratory phase. Subsequent isoguvacine microinjections at the same loci abolished PI-motor or laryngeal constrictor activity, triggered apneusis and established a variable and decreased breathing frequency. In summary, we revealed that excitation or inhibition of defined areas within the KF activated and blocked PI activity and, consequently, IOS. Therefore, we conclude, first, that descending KF inputs are essential to gate PI activity required for a proper pattern formation and phase control within the respiratory network, at least during absence of pulmonary stretch receptor activity and, secondly, that the KF contains large numbers of laryngeal PI premotor neurons that might have a key role in the regulation of upper airway resistance during reflex control and vocalization. [source] Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatulaTHE PLANT JOURNAL, Issue 1 2009Reyes Benlloch Summary The B-class gene PISTILLATA (PI) codes for a MADS-box transcription factor required for floral organ identity in angiosperms. Unlike Arabidopsis, it has been suggested that legume PI genes contribute to a variety of processes, such as the development of floral organs, floral common petal,stamen primordia, complex leaves and N-fixing root nodules. Another interesting feature of legume PI homologues is that some of them lack the highly conserved C-terminal PI motif suggested to be crucial for function. Therefore, legume PI genes are useful for addressing controversial questions on the evolution of B-class gene function, including how they may have diverged in both function and structure to affect different developmental processes. However, functional analysis of legume PI genes has been hampered because no mutation in any B-class gene has been identified in legumes. Here we fill this gap by studying the PI function in the model legume species Medicago truncatula using mutant and RNAi approaches. Like other legume species, M. truncatula has two PI homologues. The expression of the two genes, MtPI and MtNGL9, has strongly diverged, suggesting differences in function. Our analyses show that these genes are required for petal and stamen identity, where MtPI appears to play a predominant role. However, they appear not to be required for development of the nodule, the common primordia or the complex leaf. Moreover, both M. truncatula PI homologues lack the PI motif, which indicates that the C-terminal motif is not essential for PI activity. [source] Protease inhibitors and reproduction of reniform nematode in pineappleANNALS OF APPLIED BIOLOGY, Issue 1 2009C. Rabovich Abstract Endogenous protease inhibitors (PIs) in the roots of Smooth Cayenne pineapple clones may affect the growth of the plant-parasitic nematode Rotylenchulus reniformis. In pineapple, reniform population densities remain atypically near preplant levels for 6,9 months after pineapple planting. A potted plant experiment was conducted to determine if the PI present in pineapple roots affected nematode reproduction and possibly account for the observed nematode field population dynamics. Pineapple PI activity increased for the first 6 months after planting and was higher in nematode-inoculated plants. Nematode reproduction, however, was not correlated to PI activity. In a second experiment, PI activity was concentrated in the portion of the roots nearest the pineapple butt where nematode population densities were highest. The behaviour of the PI in pineapple roots suggested a defensive role, such as systemic acquired resistance, against R. reniformis. [source] |