Physiological Tolerance (physiological + tolerance)

Distribution by Scientific Domains


Selected Abstracts


Corticolous arthropods under climatic fluctuations: compensation is more important than migration

ECOGRAPHY, Issue 1 2005
Andreas Prinzing
Animals can cope with fluctuating climates by physiological tolerance, tracking of climatic fluctuations (migration) and compensatory redistribution among (micro)habitats (compensation). Compensation is less demanding and thus more important than migration at large geographic scales. It is not clear however which strategy is more important at the small scale of a microhabitat landscape. I investigated how six arthropod species (Collembola, Oribatei, Psocoptera, Isopoda) respond to microclimatic fluctuations at the surface of exposed tree trunks. Across a nine-month period I characterized the microclimatic zonation of 299 trunks, and focally sampled the arthropods from different microhabitat types (different cryptogam species and bark crevices) within different microclimatic zones. I found that compensatory microhabitat-use was a general phenomenon. The distribution of all species across microhabitats was influenced significantly by ambient microclimate. Also, the arthropods' microhabitat use changed throughout their ontogeny, and microhabitats were used even if they were rare. Most interestingly, the arthropods responded to microclimatic fluctuations primarily by redistribution among microhabitats and less by fluctuations of overall abundances across all microhabitats. Hence compensation was more important than migration. The animals moved for centimeters to decimeters rather than for decimeters to meters; they perceived and utilized their environment primarily at the finest, but also most complex scale. This has implications for the resilience of arthropod populations, their interactions with cryptogams and the turnover of species between macrohabitats. [source]


Distribution and dispersal of desert mistletoe is scale-dependent, hierarchically nested

ECOGRAPHY, Issue 2 2004
Juliann Eve Aukema
Spatial patterns are important to many ecological processes, and scale is a critical component of both patterns and processes. I examined the pattern and scale of the spatial distribution of infection of host plants by the desert mistletoe, Phoradendron californicum, in a landscape that spans several square kilometers. I also studied the relationship between mistletoe infection and seed dispersal. I found elevated seed rain in areas with a high prevalence of mistletoes and I found that a greater proportion of trees receive seeds than are infected, suggesting that mistletoes will be aggregated in space. Using nested analysis of variance and variograms, I found that mistletoe infections were distributed in hierarchical patches. Mistletoes were aggregated within trees and mistletoe prevalence was correlated at scales of <1500 m, and at scales >4000 m. Patterns at the largest scales were correlated with elevation: sites at higher elevations showed reduced mistletoe infection compared to those at lower elevations. I propose that at small scales, mistletoe distributions are primarily the result of aggregation of seed-dispersing birds, and that the elevational effect could reflect the recent colonization of higher elevations by the mistletoes' mesquite hosts or the limits of the mistletoes' physiological tolerance to freezing-induced cavitation. [source]


Acacia species turnover in space and time in an African savanna

JOURNAL OF BIOGEOGRAPHY, Issue 1 2001
William J. Bond
Aim Patterns of species turnover along environmental gradients are better studied than their causes. Competitive interactions, or physiological tolerance are most often cited as determinants of turnover. Here we investigate differential tree species response to disturbance by fire and mammal browsing as causes of changing dominance of species within and among sites along an altitudinal gradient. Methods We documented the distribution of two Acacia species using maps and sample transects. We explored possible causes of species turnover by studying differences between the species in tolerance to grass competition using pot experiments, to browsers by observing patterns of shoot damage, and to fire by comparing the size structure of populations burnt at different frequencies and intensities. Results Acacia karroo woodlands were rare and occur at higher elevations than the much more common A. nilotica woodlands. Woodland composition seems set to change in future since the pattern of dominance was reversed in juvenile stages. A. karroo juveniles were very widespread and far more abundant than A. nilotica juveniles. A. karroo juveniles were most abundant in tall fire-prone grasslands and were rare on grazing lawns whereas A. nilotica showed the reverse pattern. In the pot experiments, growth of both species was suppressed by grasses but there were no significant differences in response between the two species. Juveniles of A. karroo were more heavily browsed than those of A. nilotica. However juveniles of A. nilotica were less tolerant of frequent intense burns than juvenile A. karroo. Main conclusions Disturbance gradients, from high fire frequency and low herbivore density at high altitudes, to lower fire frequency and higher herbivore density at low altitudes, are responsible for the shift in community structure along the spatial gradient. Differential responses to browsing and fire may also explain temporal turnover from A. nilotica in the past to A. karroo in the present. Changes in the area burnt annually, and in faunal composition, suggest a landscape-scale shift from grazing-dominated short-grass landscapes in the 1960s, favouring A. nilotica, to fire-dominated tall grasslands in the 1990s favouring A. karroo. We suggest that species turnover due to differential responses along disturbance gradients may be much more widespread than the current paucity of studies suggests. [source]


Tolerance of Pinus taeda and Pinus serotina to low salinity and flooding: Implications for equilibrium vegetation dynamics

JOURNAL OF VEGETATION SCIENCE, Issue 1 2008
Benjamin Poulter
Abstract Questions: 1. Do pine seedlings in estuarine environments display discrete or continuous ranges of physiological tolerance to flooding and salinity? 2. What is the tolerance of Pinus taeda and P. serotina to low salinity and varying hydrologic conditions? 3. Are the assumptions for ecological equilibrium met for modeling plant community migration in response to sea-level rise? Location: Albemarle Peninsula, North Carolina, USA. Methods: In situ observations were made to quantify natural pine regeneration and grass cover along a salinity stress gradient (from marsh, dying or dead forest, to healthy forest). A full-factorial greenhouse experiment was set up to investigate mortality and carbon allocation of Pinus taeda and P. serotina to low-salinity conditions and two hydrology treatments over 6 months. Treatments consisted of freshwater and two salinity levels (4 ppt and 8 ppt) under either permanently flooded or periodically flushed hydrologic conditions. Results: Natural pine regeneration was common (5,12 seedlings per m2) in moderate to well-drained soils where salinity concentrations were below ca. 3.5 ppt. Pine regeneration was generally absent in flooded soils, and cumulative mortality was 100% for 4 and 8 ppt salinity levels under flooded conditions in the greenhouse study. Under weekly flushing conditions, mortality was not significantly different between 0 and 4 ppt, confirming field observations. Biomass accumulation was higher for P. taeda, but for both pine species, the root to shoot ratio was suppressed under the 8 ppt drained treatment, reflecting increased below-ground stress. Conclusions: While Pinus taeda and P. serotina are commonly found in estuarine ecosystems, these species display a range of physiological tolerance to low-salinity conditions. Our results suggest that the rate of forest migration may lag relative to gradual sea-level rise and concomitant alterations in hydrology and salinity. Current bioclimate or landscape simulation models assume discrete thresholds in the range of plant tolerance to stress, especially in coastal environments, and consequently, they may overestimate the rate, extent, and timing of plant community response to sea-level rise. [source]


Biodiversity in microbial communities: system scale patterns and mechanisms

MOLECULAR ECOLOGY, Issue 7 2009
J. JACOB PARNELL
Abstract The relationship between anthropogenic impact and the maintenance of biodiversity is a fundamental question in ecology. The emphasis on the organizational level of biodiversity responsible for ecosystem processes is shifting from a species-centred focus to include genotypic diversity. The relationship between biodiversity measures at these two scales remains largely unknown. By stratifying anthropogenic effects between scales of biodiversity of bacterial communities, we show a statistically significant difference in diversity based on taxonomic scale. Communities with intermediate species richness show high genotypic diversity while speciose and species-poor communities do not. We propose that in species-poor communities, generally comprising stable yet harsh conditions, physiological tolerance and competitive trade-offs limit both the number of species that occur and the loss of genotypes due to decreases in already constrained fitness. In species-rich communities, natural environmental conditions result in well-defined community structure and resource partitioning. Disturbance of these communities disrupts niche space, resulting in lower genotypic diversity despite the maintenance of species diversity. Our work provides a model to inform future research about relationships between species and genotypic biodiversity based on determining the biodiversity consequences of changing environmental context. [source]


Behavioural responses of carnivorous marsupials (Planigale maculata) to toxic invasive cane toads (Bufo marinus)

AUSTRAL ECOLOGY, Issue 5 2010
JOHN LLEWELYN
Abstract The arrival of a toxic invasive species may impose selection on local predators to avoid consuming it. Feeding responses may be modified via evolutionary changes to behaviour, or via phenotypic plasticity (e.g. learning, taste aversion). The recent arrival of cane toads (Bufo marinus) in the Northern Territory of Australia induced rapid aversion learning in a predatory marsupial (the common planigale, Planigale maculata). Here, we examine the responses of planigales to cane toads in north-eastern Queensland, where they have been sympatric for over 60 years, to investigate whether planigale responses to cane toads have been modified by long-term exposure. Responses to toads were broadly similar to those documented for toad-naïve predators. Most Queensland planigales seized (21 of 22) and partially consumed (11 of 22) the first toad they were offered, but were likely to ignore toads in subsequent trials. However, unlike their toad-naïve conspecifics from the Northern Territory, the Queensland planigales all survived ingestion of toad tissue without overt ill effects and continued to attack toads in a substantial proportion of subsequent trials. Our data suggest that (i) learning by these small predators is sufficiently rapid and effective that selection on behaviour has been weak; and (ii) physiological tolerance to toad toxins may be higher in planigales after 60 years (approximately 60 generations) of exposure to this toxic prey. [source]


Vulnerability of an Australian anuran tadpole assemblage to the toxic eggs of the invasive cane toad (Bufo marinus)

AUSTRAL ECOLOGY, Issue 2 2010
MICHAEL R. CROSSLAND
Abstract The invasion of cane toads (Bufo marinus) across tropical Australia has fatally poisoned many native predators; the most frequent victims may be tadpoles of native frogs, which die when they consume the toxic eggs of the toads. Field studies have documented high and species-specific mortality of tadpoles following toad spawning. To clarify the determinants of tadpole vulnerability, we conducted 1593 laboratory trials in which single tadpoles were exposed to 10 toad eggs, either with or without an alternative food source (lettuce). At least some tadpoles within all 15 species tested consumed toad eggs. Interspecific variance in survival rates (from 0 to >70%) was driven by feeding responses not by physiological tolerance to toxins: almost all native tadpoles that consumed eggs died rapidly. Tadpole mortality was decreased by the presence of an alternative food source in four species, increased in two species, and not affected in seven species. In three of four taxa where we tested both small (early-stage) and large (late-stage) tadpoles, both mean survival rates and the effects of alternative food on survival shifted with tadpole body size. Trials with one species (Limnodynastes convexiusculus) showed no significant inter-clutch variation in feeding responses or tolerance to toxins. Overall, our data show that cane toad eggs are highly toxic to native anuran tadpoles, but that whether or not a tadpole is killed by encountering toad eggs depends upon a complex interaction between the native anuran's species, its body size, and whether or not alternative food was present. In nature, larval vulnerability also depends upon the seasonal timing and location of spawning events, and habitat selection and foraging patterns of the tadpoles. Our results highlight the complexity of vulnerability determinants, and identify ecological factors (rather than physiology or feeding behaviour) as the primary determinants of cane toad impact on native tadpoles. [source]


Understanding fish habitat ecology to achieve conservation,

JOURNAL OF FISH BIOLOGY, Issue 2005
J. C. Rice
Habitat science can provide the unifying concepts to bring together ecological studies of physiological tolerances, predator avoidance, foraging and feeding, reproduction and life histories. Its unifying role is built on two assumptions, imported from terrestrial habitat science and not always stated explicitly: that competition is present interspecifically and intraspecifically under at least some conditions, and that habitat features have some persistence and predictability in space and time. Consistent with its central conceptual position in ecology, habitat science has contributed importantly to scientific advice on pollution, coastal zone management and many other areas of environmental quality, although it has been largely divorced from developments in fish populations dynamics done in support of fisheries management. Commitments by most management agencies to apply an integrated, ecosystem approach to management of human activities in marine systems, poses new challenges to marine science advisors to management. Integrated management and ecosystem approaches both inherently require spatial thinking and spatial tools, making habitat science a particularly relevant advisory framework, particularly because of the unifying role of habitat in ecology. The basic mechanisms behind ocean biological dynamics, productivity, concentration and retention, however, present much weaker opportunities for competition and less persistence and predictability, weakening the foundations of theory and concepts behind current habitat science. The paper highlights the new types of thinking about ,habitat' that will be required, if habitat science is to meet the advisory needs of the new approaches to management. [source]


Seed Dispersal Distances and Plant Migration Potential in Tropical East Asia

BIOTROPICA, Issue 5 2009
Article first published online: 9 MAR 200, Richard T. Corlett
ABSTRACT Most predictions of vegetation responses to anthropogenic climate change over the next 100 yr are based on plant physiological tolerances and do not account for the ability of plant species to migrate over the distances required in the time available, or the impact of habitat fragmentation on this ability. This review assesses the maximum routine dispersal distances achievable in tropical East Asia and their vulnerability to human impacts. Estimates for various plant,vector combinations range from < 10 m, for species dispersed by ants or mechanical means, to > 10 km for some species dispersed by wind (tiny seeds), water, fruit pigeons, large fruit bats (tiny seeds), elephants, rhinoceroses, and people. Most plant species probably have maximum dispersal distances in the 100,1000 m range, but the widespread, canopy-dominant Dipterocarpaceae and Fagaceae are normally dispersed < 100 m. Large fruit bats and fruit pigeons are particularly important for long-distance dispersal in fragmented landscapes and should be protected from hunting. The maximum seed dispersal distances estimated in this study are potentially sufficient for many plant species to track temperature changes in steep topography, but are far too small for a significant role in mitigating climate change impacts in the lowlands, where temperature and rainfall gradients are much more shallow. [source]