Home About us Contact | |||
Physiological Strategies (physiological + strategy)
Selected AbstractsInter-sexual differences in the immune response of Eurasian kestrel nestlings under food shortageECOLOGY LETTERS, Issue 1 2002Juan A. Fargallo When resources are limited, parents should decide the optimal number, size, and sex of progeny, and offspring should decide the optimal allocation of resources to different costly functions, such as growth and immunity. We manipulated clutch sizes of Eurasian kestrels by one egg to estimate possible cumulative effects of incubation and chick rearing costs on parental body condition, feeding effort, and offspring viability. No obvious effects of clutch size manipulations on feeding effort were found while feeding effort was adjusted to the original clutch size. Enlarged and control nests suffered from higher nestling mortality than reduced nests, and chicks of the enlarged group were in poorer body condition than chicks of the reduced group. Controlling for body mass, male chicks exhibited lower cell-mediated immunity assessed by a cutaneous hypersensitivity response than females, but only in treatments suffering from food restrictions, as indicated by chick starvation. These novel results reveal inter-sexual differences in physiological strategies in early life, suggesting sex-related differences in susceptibility to disease and consequently in survival prospects of offspring. [source] Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamicsGLOBAL CHANGE BIOLOGY, Issue 5 2009LISA D. PATRICK Abstract Alterations in global and regional precipitation patterns are expected to affect plant and ecosystem productivity, especially in water-limited ecosystems. This study examined the effects of natural and supplemental (25% increase) seasonal precipitation on a sotol grassland ecosystem in Big Bend National Park in the Chihuahuan Desert. Physiological responses , leaf photosynthesis at saturating light (Asat), stomatal conductance (gs), and leaf nitrogen [N] , of two species differing in their life form and physiological strategies (Dasylirion leiophyllum, a C3 shrub; Bouteloua curtipendula, a C4 grass) were measured over 3 years (2004,2006) that differed greatly in their annual and seasonal precipitation patterns (2004: wet, 2005: average, 2006: dry). Precipitation inputs are likely to affect leaf-level physiology through the direct effects of altered soil water and soil nitrogen. Thus, the effects of precipitation, watering treatment, soil moisture, and nitrogen were quantified via multivariate hierarchical Bayesian models that explicitly linked the leaf and soil responses. The two species differed in their physiological responses to precipitation and were differentially controlled by soil water vs. soil nitrogen. In the relatively deeply rooted C3 shrub, D. leiophyllum, Asat was highest in moist periods and was primarily regulated by deep (16,30 cm) soil water. In the shallow-rooted C4 grass, B. curtipendula, Asat was only coupled to leaf [N], both of which increased in dry periods when soil [N] was highest. Supplemental watering during the wet year generally decreased Asat and leaf [N] in D. leiophyllum, perhaps due to nutrient limitation, and physiological responses in this species were influenced by the cumulative effects of 5 years of supplemental watering. Both species are common in this ecosystem and responded strongly, yet differently, to soil moisture and nitrogen, suggesting that changes in the timing and magnitude of precipitation may have consequences for plant carbon gain, with the potential to alter community composition. [source] Behavior and physiology of mechanoreception: separating signal and noiseINTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 1 2009John C. MONTGOMERY Abstract The mechanosensory lateral line is found in all aquatic fish and amphibians. It provides a highly sensitive and versatile hydrodynamic sense that is used in a wide range of behavior. Hydrodynamic stimuli of biological interest originate from both abiotic and biotic sources, and include water currents, turbulence and the water disturbances caused by other animals, such as prey, predators and conspecifics. However, the detection of biologically important stimuli often has to occur against a background of noise generated by water movement, or movement of the fish itself. As such, separating signal and noise is "of the essence" in understanding the behavior and physiology of mechanoreception. Here we discuss general issues of signal and noise in the lateral-line system and the behavioral and physiological strategies that are used by fish to enhance signal detection in a noisy environment. In order for signal and noise to be separated, they need to differ, and we will consider those differences under the headings of: frequency and temporal pattern; intensity discrimination; spatial separation; and mechanisms for the reduction of self-generated noise. We systematically cover the issues of signal and noise in lateral-line systems, but emphasize recent work on self-generated noise, and signal and noise issues related to prey search strategies and collision avoidance. [source] Short-term physiological response of the Pacific oyster, Crassostrea gigas, on exposure to varying levels of polycyclic aromatic hydrocarbonAQUACULTURE RESEARCH, Issue 15 2007Mu-Chan Kim Abstract In the present study, we investigate the short-term adaptive physiological strategies to polycyclic aromatic hydrocarbon (PAH) of Pacific oysters, Crassostrea gigas, by exposing the oysters to varying levels of PAH (0, 50, 100 and 200 ,g L,1) for 7 days with a 3-day acclimation period under laboratory conditions. The filtration rate (FR) and respiration rate (R) increased significantly at 50 ,g L,1 PAH and decreased at 100 and 200 ,g L,1 compared with the control. The absorption efficiency (Abs. eff.) was significantly impaired at 200 ,g L,1 PAH. Ammonia excretion (E) increased with increasing PAH levels, with a significant elevation at 200 ,g L,1. Although a significantly elevated FR was observed, oysters exposed to 50 ,g L,1 PAH showed scope for growth (SFG) similar to the control. This indicates that even at nominal levels, PAH contamination is a possible cause of reduced oyster production because of increased food demand. The oysters exposed to 200 ,g L,1 PAH showed negative SFG values, which could be a possible cause of growth stagnation or even mortality when the exposure is chronic. [source] Varietal Differences in Development of Maize (Zea mays L.) Seedlings on Compacted SoilsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2001L. O. Soyelu Differences among open-pollinated tropical maize (Zea mays L.) varieties in seedling development and establishment on compacted soils were studied. Soil dry density was used as an index of compaction. Three soil compaction levels and 12 traits associated with development and establishment of maize seedlings were investigated. A control (without compaction) was also included. Varietal differences were observed for most traits measured. Genetic differences for seedling development on compacted soil were detected. Varietal differences contributed about three times the contribution of compaction to total variability in the traits. Better seedling development and performance were obtained in moderately compacted soil than in the control. Shoot length, shoot dry weight and per cent dry matter in roots were good indicators of the tolerance of maize seedlings to compaction. A physiological strategy for maize seedling establishment on compacted soil was proposed. The implications of the results for seed testing were also highlighted. It was concluded that consideration should be given to the genotype of maize destined for use in ecologies prone to high soil densities. All varieties of maize grown in an agroecological zone could be screened to identify genotypes tolerant of higher soil densities. The seeds could then be multiplied and distributed to farmers. Sortenunterschiede in der Entwicklung von Mais (Zea mays L.)-Sämlingen in verdichteten Böden Sortenunterschiede der Sämlingsentwicklung und des Aufwuchses wurden in verdichteten Böden bei fremdbestäubenden tropischen Mais (Zea mays L.)-Sorten untersucht. Die Bodentrockendichte wurde als Index für die Verdichtung verwendet. Drei Verdichtungsstärken und zwölf Behandlungen im Zusammenhang mit der Entwicklung und dem Anwuchs von Maissämlingen wurden untersucht. Eine Kontrolle (ohne Bodenverdichtung) wurde berücksichtigt. Sortenunterschiede wurden für die meisten Eigenschaften gemessen. Genetische Differenzen der Sämlingsentwicklung in verdichteten Böden konnten beobachtet werden. Sortendifferenzen trugen etwa dreifach im Vergleich zur Bodenverdichtung im Hinblick auf die Gesamtvariabilität der Eigenschaften bei. Bessere Sämlingentwicklung und Sämlingsleistung wurden an moderat verdichteten Böden im Vergleich zur Kontrolle beobachtet. Die Sprosslänge, das Sprosstrockengewicht und die Trockenmasse prozent in Wurzeln gaben gute Hinweise hinsichtlich der Toleranz der Maissämlinge gegenüber Bodenverdichtung. Eine physiologische Strategie für die Maissämlingsentwicklung in verdichteten Böden wird vorgeschlagen. Die Bedeutung der Ergebnisse für Samentestzwecke wurde betont. Es wird angenommen, dass Genotypen für den Anbau in ökologischen Bedingungen, die starke Bodenverdichtungen aufweisen, berücksichtigt werden sollten. Da viele Maissorten in agroökologischen Gebieten angebaut werden, sollten diese getestet werden, um Genotypen mit Toleranz gegenüber stärkerer Bodenverdichtung zu identifizieren. Diese Samen könnten dann vermehrt und an Landwirt abgegeben werden. [source] Thyrocyte integration, and thyroid folliculogenesis and tissue regeneration: Perspective for thyroid tissue engineeringPATHOLOGY INTERNATIONAL, Issue 6 2001Shuji Toda The thyroid gland is composed of many ball-like structures called thyroid follicles, which are supported by the interfollicular extracellular matrix (ECM) and a capillary network. The component thyrocytes are highly integrated in their specific structural and functional polarization. In conventional monolayer and floating culture systems, thyrocytes cannot organize themselves into follicles with normal polarity. In contrast, in 3-D collagen gel culture, thyrocytes easily form stable follicles with physiological polarity. Integration of thyrocyte growth and differentiation results ultimately in thyroid folliculogenesis. This culture method and subacute thyroiditis are two promising models for addressing mechanisms of folliculogenesis, because thyroid-follicle formation actively occurs both in the culture system and at the regenerative phase of the disorder. The understanding of the mechanistic basis of folliculogenesis is prerequisite for generation of artificial thyroid tissue, which would enable a more physiological strategy to the treatment of hypothyroidism caused by various diseases and surgical processes than conventional hormone replacement therapy. We review here thyrocyte integration, and thyroid folliculogenesis and tissue regeneration. We also briefly discuss a perspective for thyroid tissue regeneration and engineering. [source] |