Physiological Context (physiological + context)

Distribution by Scientific Domains


Selected Abstracts


Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells

FEBS JOURNAL, Issue 4 2006
Jos W. G. Van Rosmalen
The cellular form of prion protein (PrPC) is anchored to the plasma membrane of the cell and expressed in most tissues, but predominantly in the brain, including in the pituitary gland. Thus far, the biosynthesis of PrPC has been studied only in cultured (transfected) tumour cell lines and not in primary cells. Here, we investigated the intracellular fate of PrPCin vivo by using the neuroendocrine intermediate pituitary melanotrope cells of the South-African claw-toed frog Xenopus laevis as a model system. These cells are involved in background adaptation of the animal and produce high levels of its major secretory cargo proopiomelanocortin (POMC) when the animal is black-adapted. The technique of stable Xenopus transgenesis in combination with the POMC gene promoter was used as a tool to express Xenopus PrPC amino-terminally tagged with the green fluorescent protein (GFP,PrPC) specifically in the melanotrope cells. The GFP,PrPC fusion protein was expressed from stage-25 tadpoles onwards to juvenile frogs, the expression was induced on a black background and the fusion protein was subcellularly located mainly in the Golgi apparatus and at the plasma membrane. Pulse,chase metabolic cell labelling studies revealed that GFP,PrPC was initially synthesized as a 45-kDa protein that was subsequently stepwise glycosylated to 48-, 51-, and eventually 55-kDa forms. Furthermore, we revealed that the mature 55-kDa GFP,PrPC protein was sulfated, anchored to the plasma membrane and cleaved to a 33-kDa product. Despite the high levels of transgene expression, the subcellular structures as well as POMC synthesis and processing, and the secretion of POMC-derived products remained unaffected in the transgenic melanotrope cells. Hence, we studied PrPC in a neuroendocrine cell and in a well-defined physiological context. [source]


Specialized rules of gene transcription in male germ cells: the CREM paradigm*

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 6 2004
Lucia Monaco
Summary Specialized transcription complexes that coordinate the differentiation programme of spermatogenesis have been found in germ cells, which display specific differences in the components of the general transcription machinery. The TATA-binding protein family and its associated cofactors, for example, show upregulated expression in testis. In this physiological context, transcriptional control mediated by the activator cAMP response element modulator (CREM) represents an established paradigm. Somatic cell activation by CREM requires its phosphorylation at a unique regulatory site (Ser117) and subsequent interaction with the ubiquitous coactivator CREB-binding protein. In testis, CREM transcriptional activity is controlled through interaction with a tissue-specific partner, activator of CREM in the testis (ACT), which confers a powerful, phosphorylation-independent activation capacity. The function of ACT was found to be regulated by the testis-specific kinesin KIF17b. Here we discuss some aspects of the testis-specific transcription machinery, whose function is essential for the process of spermatogenesis. [source]


Transcriptional changes in insulin- and lipid metabolism-related genes in the hippocampus of olfactory bulbectomized mice

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2008
Peter Gass
Abstract Affymetrix chips were used to perform a hypothesis-free large-scale screening of transcripts in the hippocampus of olfactory bulbectomized mice, an established animal model of depression. Because only 11 transcripts were significantly changed, the statistically subsequent 25 transcripts below the significance level were additionally included in a first round of qRT-PCR evaluations. Furthermore, all 36 genes were then tested for mutual interactions or interactions with other molecules in a physiological context using PathwayArchitect software. Thirty of them were displayed in a network interacting with at least one partner molecule from the list or with other partner molecules known from the literature. All partner molecules from the most prominent 10 molecules of this network were then identified and put together into a new list. On those grounds, the hypothesis was made that metabolic network components of the insulin signaling pathway are perturbed in the disease. This pathway was subsequently tested by a second round of qRT-PCR, adding also a few additional candidate molecules belonging to this pathway. It turned out that the key target,FABP7,fell into the group of transcripts not significantly regulated within the chip data, and another key target,IRS1,did not show up in the chip experiments at all. In conclusion, our data reveal a problem with adhering to statistical significances in microarray experiments, insofar as molecules important for the disease may fall into the range of statistical noise. This approach may also be useful to find new targets for pharmacotherapy in affective disorders. © 2008 Wiley-Liss, Inc. [source]


A combinatorial approach to studying protein complex composition by employing size-exclusion chromatography and proteome analysis

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 10 2007
Shi-Sheng Li
Abstract The genome sequences of numerous organisms are available now, but gene sequences alone do not provide sufficient information to accurately deduce protein functions. Protein function is largely dependent on the association of multiple polypeptide chains into large structures with interacting subunits that regulate and support each other. Therefore, the mapping of protein interaction networks in a physiological context is conducive to deciphering protein functions, including those of hypothetical proteins. Although several high-throughput methods to globally identify protein interactions have been reported in recent years, these approaches often have a high rate of nonspecific or artificial interactions detected. For instance, the fraction of false positives of the protein interactions identified by yeast two-hybrid assay has been predicted to be of the order of 50%. We have developed a strategy to globally map Bacillus subtilis protein,protein interactions in a physiological context by fractionating the cell lysates using size-exclusion chromatography (SEC), followed by proteome analysis. Components of both known and unknown protein complexes, multisubunits and multiproteins, have been identified using this strategy. In one case, the partners of the B. subtilis protein complex have been coexpressed in Escherichia coli, and the formation of the overexpressed protein complex has been further confirmed by a pull-down assay. [source]


Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment

BRITISH JOURNAL OF DERMATOLOGY, Issue 6 2007
F. Meier
Summary Background, In melanoma, several signalling pathways are constitutively activated. Among them, the RAS/RAF/MEK/ERK (MAPK) and PI3K/AKT (AKT) signalling pathways are activated through multiple mechanisms and appear to play a major role in melanoma development and progression. Objectives, In this study, we examined whether targeting the MAPK and/or AKT signalling pathways would have therapeutic effects against melanoma. Methods, Using a panel of pharmacological inhibitors (BAY 43-9006, PD98059, U0126, wortmannin, LY294002) we inhibited the MAPK and AKT signalling pathways at different levels and evaluated the effects on growth, survival and invasion of melanoma cells in monolayer and organotypic skin culture. Results, Antiproliferative and proapoptotic effects of inhibitors alone in monolayer culture were disappointing and varied among the different cell lines. In contrast, combined targeting of the MAPK and AKT signalling pathways significantly inhibited growth and enhanced apoptosis in monolayer culture. To verify our data in a more physiological context we incorporated melanoma cells into regenerated human skin mimicking the microenvironment of human melanoma. Combinations of MAPK and AKT inhibitors completely suppressed invasive tumour growth of melanoma cells in regenerated human skin. Conclusions, Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment and should encourage further in-depth investigations. [source]


Extracellular excitatory amino acids increase in the paraventricular nucleus of male rats during sexual activity: main role of N -methyl- d -aspartic acid receptors in erectile function

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2004
Maria Rosaria Melis
Abstract The concentrations of glutamic and aspartic acids were measured in the dialysate obtained with vertical microdialysis probes implanted into the paraventricular nucleus of the hypothalamus of sexually potent male rats during sexual activity. Animals showed noncontact erections when put in the presence of, and copulated with, a receptive (ovarietomized oestrogen- and progesterone-primed) female rat. The concentrations of glutamic and aspartic acids in the paraventricular dialysate increased by 37 and 80%, respectively, above baseline values during exposure to the receptive female rat and by 55 and 127%, respectively, during copulation. No changes in the concentrations of glutamic and aspartic acids were detected in the paraventricular dialysate when sexually potent male rats were exposed to nonreceptive (ovariectomized not oestrogen- and progesterone-primed) female rats or when impotent male rats were used. The injection into the paraventricular nucleus of the excitatory amino acid receptor antagonist dizocilpine (5 µg), a noncompetitive N -methyl- d -aspartic acid receptor antagonist, reduced noncontact erections and significantly impaired copulatory activity. The ,-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (5 µg) was also able to impair copulatory activity, but to a much lower extent than dizocilpine. In contrast, (±)-2-amino-4-phosphono-butanoic acid, a metabotropic receptor antagonist (5 µg), was found to be ineffective. These results confirm the involvement of the paraventricular nucleus in the control of erectile function and copulatory behaviour and show that excitatory amino acid concentration increases in the paraventricular nucleus when penile erection occurs in physiological contexts. [source]


Extra-cellular dopamine increases in the paraventricular nucleus of male rats during sexual activity

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2003
Maria Rosaria Melis
Abstract Dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations were measured in the dialysate obtained with vertical microdialysis probes implanted into the paraventricular nucleus of the hypothalamus of sexually potent male rats. Animals showed noncontact erections when put in the presence of, and copulated with a receptive (ovarietomized oestrogen and progesterone primed) female rat. Dopamine and DOPAC concentrations in the paraventricular dialysate increased 140% and 19%, respectively, above baseline values during exposure to the receptive female and 280% and 31%, respectively, during copulation. No changes in dopamine and DOPAC concentrations were detected in the paraventricular dialysate when sexually potent male rats were exposed to nonreceptive (ovariectomized not oestrogen plus progesterone primed) female rats. These results confirm the involvement of the paraventricular nucleus in control of erectile function and copulatory behaviour and show for the first time that dopamine neurotransmission is increased in this hypothalamic nucleus when erection occurs in physiological contexts. [source]