Home About us Contact | |||
Physiological Adjustments (physiological + adjustment)
Selected AbstractsAllometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO2PLANT CELL & ENVIRONMENT, Issue 10 2007CARL J. BERNACCHI ABSTRACT Nitrogen concentrations in plant tissues can vary as a function of resource availability. Altered rates of plant growth and development under varying resource availabilities were examined to determine their effects on changes in whole-plant N use efficiency (NUE). Three species of old-field annuals were grown at broadly varying light, nutrient and water levels, and four species at varying atmospheric concentrations of CO2. Study results show highly variable N accrual rates when expressed as a function of plant age or size, but similar patterns of whole-plant N versus non-N biomass accrual over a wide range of environmental conditions. However, severely light-limited plants showed increased N versus biomass accrual for two of three species, and severely nutrient-limited plants had decreased N versus biomass accrual for all species. Whole-plant N accrual versus age and N versus biomass accrual increased under saturating water for two of three species. A marginally significant, modest decrease in N versus biomass accrual was found at high CO2 levels for two of four species. Physiological adjustments in NUE, expressed as N versus biomass accrual, were limited to environments with severely limited or overabundant resources. [source] C3,C4 composition and prior carbon dioxide treatment regulate the response of grassland carbon and water fluxes to carbon dioxideFUNCTIONAL ECOLOGY, Issue 1 2007H. W. POLLEY Summary 1Plants usually respond to carbon dioxide (CO2) enrichment by increasing photosynthesis and reducing transpiration, but these initial responses to CO2 may not be sustained. 2During May, July and October 2000, we measured the effects of temporarily increasing or decreasing CO2 concentration by 150,200 µmol mol,1 on daytime net ecosystem CO2 exchange (NEE) and water flux (evapotranspiration, ET) of C3,C4 grassland in central Texas, USA that had been exposed for three growing seasons to a CO2 gradient from 200 to 560 µmol mol,1. Grassland grown at subambient CO2 (< 365 µmol mol,1) was exposed for 2 days to an elevated CO2 gradient (> 365 µmol mol,1). Grassland grown at elevated CO2 was exposed for 2 days to a subambient gradient. Our objective was to determine whether growth CO2 affected the amount by which grassland NEE and ET responded to CO2 switching (sensitivity to CO2). 3The NEE per unit of leaf area was greater (16,20%) and ET was smaller (9,20%), on average, at the higher CO2 concentration during CO2 switching in May and July. The amount by which NEE increased at the higher CO2 level was smaller at elevated than subambient growth concentrations on both dates, but relationships between NEE response and growth CO2 were weak. Conversely, the effect of temporary CO2 change on ET did not depend on growth CO2. 4The ratio of NEE at high CO2 to NEE at low CO2 during CO2 change in July increased from 1·0 to 1·26 as the contribution of C3 cover to total cover increased from 26% to 96%. Conversely, in May, temporary CO2 enrichment reduced ET more in C4 - than C3 -dominated grassland. 5For this mesic grassland, sensitivity of NEE and ET to brief change in CO2 depended as much on the C3,C4 composition of vegetation as on physiological adjustments related to prior CO2 exposure. [source] Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulationsGLOBAL CHANGE BIOLOGY, Issue 9 2005Paul J. Hanson Abstract Observed responses of upland-oak vegetation of the eastern deciduous hardwood forest to changing CO2, temperature, precipitation and tropospheric ozone (O3) were derived from field studies and interpreted with a stand-level model for an 11-year range of environmental variation upon which scenarios of future environmental change were imposed. Scenarios for the year 2100 included elevated [CO2] and [O3] (+385 ppm and +20 ppb, respectively), warming (+4°C), and increased winter precipitation (+20% November,March). Simulations were run with and without adjustments for experimentally observed physiological and biomass adjustments. Initial simplistic model runs for single-factor changes in CO2 and temperature predicted substantial increases (+191% or 508 g C m,2 yr,1) or decreases (,206% or ,549 g C m,2 yr,1), respectively, in mean annual net ecosystem carbon exchange (NEEa,266±23 g C m,2 yr,1 from 1993 to 2003). Conversely, single-factor changes in precipitation or O3 had comparatively small effects on NEEa (0% and ,35%, respectively). The combined influence of all four environmental changes yielded a 29% reduction in mean annual NEEa. These results suggested that future CO2 -induced enhancements of gross photosynthesis would be largely offset by temperature-induced increases in respiration, exacerbation of water deficits, and O3 -induced reductions in photosynthesis. However, when experimentally observed physiological adjustments were included in the simulations (e.g. acclimation of leaf respiration to warming), the combined influence of the year 2100 scenario resulted in a 20% increase in NEEa not a decrease. Consistent with the annual model's predictions, simulations with a forest succession model run for gradually changing conditions from 2000 to 2100 indicated an 11% increase in stand wood biomass in the future compared with current conditions. These model-based analyses identify critical areas of uncertainty for multivariate predictions of future ecosystem response, and underscore the importance of long term field experiments for the evaluation of acclimation and growth under complex environmental scenarios. [source] Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleusTHE PLANT JOURNAL, Issue 1 2009Michael Mishkind Summary Heat stress induces an array of physiological adjustments that facilitate continued homeostasis and survival during periods of elevated temperatures. Here, we report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phospholipase D (PLD) and a phosphatidylinositolphosphate kinase (PIPK) are activated, and phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) rapidly accumulate, with the heat-induced PIP2 localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures. Increases in the steady-state levels of PA and PIP2 occur within several minutes of temperature increases from ambient levels of 20,25°C to 35°C and above. Similar patterns were observed in heat-stressed Arabidopsis seedlings and rice leaves. The PA that accumulates in response to temperature increases results in large part from the activation of PLD rather than the sequential action of phospholipase C and diacylglycerol kinase, the alternative pathway used to produce this lipid. Pulse-labelling analysis revealed that the PIP2 response is due to the activation of a PIPK rather than inhibition of a lipase or a PIP2 phosphatase. Inhibitor experiments suggest that the PIP2 response requires signalling through a G-protein, as aluminium fluoride blocks heat-induced PIP2 increases. These results are discussed in the context of the diverse cellular roles played by PIP2 and PA, including regulation of ion channels and the cytoskeleton. [source] Animal performance and stress: responses and tolerance limits at different levels of biological organisationBIOLOGICAL REVIEWS, Issue 2 2009Karin S. Kassahn ABSTRACT Recent advances in molecular biology and the use of DNA microarrays for gene expression profiling are providing new insights into the animal stress response, particularly the effects of stress on gene regulation. However, interpretation of the complex transcriptional changes that occur during stress still poses many challenges because the relationship between changes at the transcriptional level and other levels of biological organisation is not well understood. To confront these challenges, a conceptual model linking physiological and transcriptional responses to stress would be helpful. Here, we provide the basis for one such model by synthesising data from organismal, endocrine, cellular, molecular, and genomic studies. We show using available examples from ectothermic vertebrates that reduced oxygen levels and oxidative stress are common to many stress conditions and that the responses to different types of stress, such as environmental, handling and confinement stress, often converge at the challenge of dealing with oxygen imbalance and oxidative stress. As a result, a common set of stress responses exists that is largely independent of the type of stressor applied. These common responses include the repair of DNA and protein damage, cell cycle arrest or apoptosis, changes in cellular metabolism that reflect the transition from a state of cellular growth to one of cellular repair, the release of stress hormones, changes in mitochondrial densities and properties, changes in oxygen transport capacities and changes in cardio-respiratory function. Changes at the transcriptional level recapitulate these common responses, with many stress-responsive genes functioning in cell cycle control, regulation of transcription, protein turnover, metabolism, and cellular repair. These common transcriptional responses to stress appear coordinated by only a limited number of stress-inducible and redox-sensitive transcription factors and signal transduction pathways, such as the immediate early genes c-fos and c-jun, the transcription factors NF,B and HIF - 1,, and the JNK and p38 kinase signalling pathways. As an example of environmental stress responses, we present temperature response curves at organismal, cellular and molecular levels. Acclimation and physiological adjustments that can shift the threshold temperatures for the onset of these responses are discussed and include, for example, adjustments of the oxygen delivery system, the heat shock response, cellular repair system, and transcriptome. Ultimately, however, an organism's ability to cope with environmental change is largely determined by its ability to maintain aerobic scope and to prevent loss in performance. These systemic constraints can determine an organism's long-term survival well before cellular and molecular functions are disturbed. The conceptual model we propose here discusses some of the crosslinks between responses at different levels of biological organisation and the central role of oxygen balance and oxidative stress in eliciting these responses with the aim to help the interpretation of environmental genomic data in the context of organismal function and performance. [source] |