Home About us Contact | |||
Physik
Kinds of Physik Selected AbstractsCover Picture: Fortschritte der Physik 10 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 10 2010Article first published online: 7 SEP 2010 The cover page of 2010 shows an abstract picture of the so-called string landscape. It is known for some time that, although string theory seems to be unique in ten or eleven space-time dimensions, a vast number of solutions pops out upon compactification to lower dimensions, in particular to fours space-time dimensions. [source] Contents: Fortschritte der Physik 10 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 10 2010Article first published online: 7 SEP 2010 No abstract is available for this article. [source] Cover Picture: Fortschritte der Physik 7,9 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 7-9 2010Article first published online: 21 JUN 2010 The cover page of 2010 shows an abstract picture of the so-called string landscape. It is known for some time that, although string theory seems to be unique in ten or eleven space-time dimensions, a vast number of solutions pops out upon compactification to lower dimensions, in particular to fours space-time dimensions. [source] Cover Picture: Fortschritte der Physik 6 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 6 2010Article first published online: 6 MAY 2010 The cover page of 2010 shows an abstract picture of the so-called string landscape. It is known for some time that, although string theory seems to be unique in ten or eleven space-time dimensions, a vast number of solutions pops out upon compactification to lower dimensions, in particular to fours space-time dimensions. [source] Contents: Fortschritte der Physik 6 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 6 2010Article first published online: 6 MAY 2010 No abstract is available for this article. [source] Cover Picture: Fortschritte der Physik 4,5 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 4-5 2010Article first published online: 22 MAR 2010 The cover page of 2010 shows an abstract picture of the so-called string landscape. It is known for some time that, although string theory seems to be unique in ten or eleven space-time dimensions, a vast number of solutions pops out upon compactification to lower dimensions, in particular to fours space-time dimensions. [source] Contents: Fortschritte der Physik 4,5 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 4-5 2010Article first published online: 22 MAR 2010 No abstract is available for this article. [source] Cover Picture: Fortschritte der Physik 2,3 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 2-3 2010Article first published online: 18 JAN 2010 The cover page of 2010 shows an abstract picture of the so-called string landscape. It is known for some time that, although string theory seems to be unique in ten or eleven space-time dimensions, a vast number of solutions pops out upon compactification to lower dimensions, in particular to fours space-time dimensions. [source] Contents: Fortschritte der Physik 2,3 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 2-3 2010Article first published online: 18 JAN 2010 No abstract is available for this article. [source] Cover Picture: Fortschritte der Physik 1 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 1 2010Article first published online: 16 DEC 200 The cover page of 2010 shows an abstract picture of the so-called string landscape. It is known for some time that, although string theory seems to be unique in ten or eleven space-time dimensions, a vast number of solutions pops out upon compactification to lower dimensions, in particular to four space-time dimensions. [source] Contents: Fortschritte der Physik 1 / 2010FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 1 2010Article first published online: 16 DEC 200 No abstract is available for this article. [source] Cover Picture: Fortschritte der Physik 11,12 / 2009FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 11-12 2009Article first published online: 9 NOV 200 The cover page of 2009 shows high-resolution interference "quantum carpet" patterns for the momentum wave function of an interacting Bose-Einstein condensate (BEC). As time progresses (from back to front), the many-body mean field interaction of the BEC first leads to a broadening of the wave function, but then also to a time-varying interference structure by inducing site-dependent nonlinear phase shifts when the BEC is confined in a spatially periodic potential. Imaging the wave function in momentum space for different times leads to a pattern that one reminds of a carefully woven carpet and is hence termed "quantum carpet". Quantum carpets beautifully demonstrate the surprisingly high matter wave coherence of particle-particle interactions in the zero-temperature limit. [source] Cover Picture: Fortschritte der Physik 10 / 2009FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 10 2009Article first published online: 14 SEP 200 The cover page of 2009 shows high-resolution interference "quantum carpet" patterns for the momentum wave function of an interacting Bose-Einstein condensate (BEC). As time progresses (from back to front), the many-body mean field interaction of the BEC first leads to a broadening of the wave function, but then also to a time-varying interference structure by inducing site-dependent nonlinear phase shifts when the BEC is confined in a spatially periodic potential. Imaging the wave function in momentum space for different times leads to a pattern that one reminds of a carefully woven carpet and is hence termed "quantum carpet". Quantum carpets beautifully demonstrate the surprisingly high matter wave coherence of particle-particle interactions in the zero-temperature limit. [source] Cover Picture: Fortschritte der Physik 9 / 2009FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 9 2009Article first published online: 21 AUG 200 The cover page of 2009 shows high-resolution interference "quantum carpet" patterns for the momentum wave function of an interacting Bose-Einstein condensate (BEC). As time progresses (from back to front), the many-body mean field interaction of the BEC first leads to a broadening of the wave function, but then also to a time-varying interference structure by inducing site-dependent nonlinear phase shifts when the BEC is confined in a spatially periodic potential. Imaging the wave function in momentum space for different times leads to a pattern that one reminds of a carefully woven carpet and is hence termed "quantum carpet". Quantum carpets beautifully demonstrate the surprisingly high matter wave coherence of particle-particle interactions in the zero-temperature limit. [source] Contents: Fortschritte der Physik 8 / 2009FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 8 2009Article first published online: 3 JUL 200 No abstract is available for this article. [source] Cover Picture: Fortschritte der Physik 5,7 / 2009FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 5-7 2009Article first published online: 27 MAY 200 The cover page of 2009 shows high-resolution interference "quantum carpet" patterns for the momentum wave function of an interacting Bose-Einstein condensate (BEC). As time progresses (from back to front), the many-body mean field interaction of the BEC first leads to a broadening of the wave function, but then also to a time-varying interference structure by inducing site-dependent nonlinear phase shifts when the BEC is confined in a spatially periodic potential. Imaging the wave function in momentum space for different times leads to a pattern that one reminds of a carefully woven carpet and is hence termed "quantum carpet". Quantum carpets beautifully demonstrate the surprisingly high matter wave coherence of particle-particle interactions in the zero-temperature limit. [source] Cover Picture: Fortschritte der Physik 3,4 /2009FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 3-4 2009Article first published online: 23 MAR 200 The cover page of 2009 shows high-resolution interference "quantum carpet" patterns for the momentum wave function of an interacting Bose-Einstein condensate (BEC). As time progresses (from back to front), the many-body mean field interaction of the BEC first leads to a broadening of the wave function, but then also to a time-varying interference structure by inducing site-dependent nonlinear phase shifts when the BEC is confined in a spatially periodic potential. Imaging the wave function in momentum space for different times leads to a pattern that one reminds of a carefully woven carpet and is hence termed "quantum carpet". Quantum carpets beautifully demonstrate the surprisingly high matter wave coherence of particle-particle interactions in the zero-temperature limit. [source] Cover Picture: Fortschritte der Physik 1,2 /2009FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 1-2 2009Article first published online: 9 FEB 200 The cover page of 2009 shows high-resolution interference "quantum carpet" patterns for the momentum wave function of an interacting Bose-Einstein condensate (BEC). As time progresses (from back to front), the many-body mean field interaction of the BEC first leads to a broadening of the wave function, but then also to a time-varying interference structure by inducing site-dependent nonlinear phase shifts when the BEC is confined in a spatially periodic potential. Imaging the wave function in momentum space for different times leads to a pattern that one reminds of a carefully woven carpet and is hence termed "quantum carpet". Quantum carpets beautifully demonstrate the surprisingly high matter wave coherence of particle-particle interactions in the zero-temperature limit. [source] Contents: Fortschritte der Physik 11,12 /2008FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 11-12 2008Article first published online: 27 OCT 200 No abstract is available for this article. [source] Contents: Fortschritte der Physik 10 /2008FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 10 2008Article first published online: 12 SEP 200 No abstract is available for this article. [source] Preface: Fortschritte der Physik 4-5/2008FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 4-5 2008Maja Buric No abstract is available for this article. [source] Editorial: Fortschritte der Physik 1/2008FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 1 2008D. Lüst No abstract is available for this article. [source] Fortschritte der Physik in theWorld Year of PhysicsFORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 1 2005D. Lüst No abstract is available for this article. [source] Inhalt: Physik in unserer Zeit 4/2010PHYSIK IN UNSERER ZEIT (PHIUZ), Issue 4 2010Article first published online: 29 JUN 2010 No abstract is available for this article. [source] Inhalt: Physik in unserer Zeit 3/2010PHYSIK IN UNSERER ZEIT (PHIUZ), Issue 3 2010Article first published online: 27 APR 2010 No abstract is available for this article. [source] E10: Eine fundamentale Symmetrie der Physik?PHYSIK IN UNSERER ZEIT (PHIUZ), Issue 3 2010Neuer Zugang zur Quantengravitation Abstract Symmetrien spielen in den grundlegenden Theorien der Physik eine zentrale Rolle. Sie könnten helfen, eine Quantengravitation zu entwickeln, die erfolgreich Allgemeine Relativitätstheorie und Quantentheorie zusammenbringt. Gibt es ein Symmetrieprinzip, das diese Zusammenführung bewirkt? Die einzigartige mathematische E10-Struktur eröffnet tatsächlich einen neuen Zugang zur Quantengravitation. Mit ihr ließe sich eine neue Beschreibung von urknallartigen Singularitäten und Schwarzen Löchern finden. Das vollständige Verständnis des E10-Modells mit seinen Auswirkungen auf die Struktur der Raumzeit könnte tiefe Einblicke in grundlegende Symmetrien und Prinzipien der Welt eröffnen. Noch allerdings steht die theoretische Physik hier am Anfang. [source] Heiße Action dank cooler Physik.PHYSIK IN UNSERER ZEIT (PHIUZ), Issue 3 2010Eishockey-Weltmeisterschaft 2010 Abstract Eishockey ist die schnellste Mannschaftssportart. Eis ist sehr gleitfähig, weil seine Oberfläche ein quasiflüssiger Wassermolekülfilm überzieht, der leicht verschiebbar ist. Für Geschwindigkeit sorgen zudem Schlagschüsse, bei denen der gebogene Schläger dem Puck wie eine Feder zusätzliche Energie mitgibt. Die Schutzkleidung des Tormanns bremst den Puck beim Aufprall. Sie erlaubt ihm aber auch, das Tor besser zu verdecken. [source] Inhalt: Physik in unserer Zeit 2/2010PHYSIK IN UNSERER ZEIT (PHIUZ), Issue 2 2010Article first published online: 1 MAR 2010 No abstract is available for this article. [source] Inhalt: Physik in unserer Zeit 6/2009PHYSIK IN UNSERER ZEIT (PHIUZ), Issue 6 2009Article first published online: 2 NOV 200 No abstract is available for this article. [source] Inhalt: Physik in unserer Zeit 5/2009PHYSIK IN UNSERER ZEIT (PHIUZ), Issue 5 2009Article first published online: 1 SEP 200 No abstract is available for this article. [source] |