Home About us Contact | |||
Physical Map (physical + map)
Selected AbstractsOrganization of six functional mouse alcohol dehydrogenase genes on two overlapping bacterial artificial chromosomesFEBS JOURNAL, Issue 1 2002Gabor Szalai Mammalian alcohol dehydrogenases (ADH) form a complex enzyme system based on amino-acid sequence, functional properties, and gene expression pattern. At least four mouse Adh genes are known to encode different enzyme classes that share less than 60% amino-acid sequence identity. Two ADH-containing and overlapping C57BL/6 bacterial artificial chromosome clones, RP23-393J8 and -463H24, were identified in a library screen, physically mapped, and sequenced. The gene order in the complex and two new mouse genes, Adh5a and Adh5b, and a pseudogene, Adh5ps, were obtained from the physical map and sequence. The mouse genes are all in the same transcriptional orientation in the order Adh4 - Adh1 - Adh5a - Adh5b - Adh5ps - Adh2 - Adh3. A phylogenetic tree analysis shows that adjacent genes are most closely related suggesting a series of duplication events resulted in the gene complex. Although mouse and human ADH gene clusters contain at least one gene for ADH classes I,V, the human cluster contains 3 class I genes while the mouse cluster has two class V genes plus a class V pseudogene. [source] Complete physical map and gene content of the human NF1 tumor suppressor region in human and mouseGENES, CHROMOSOMES AND CANCER, Issue 2 2003Dieter E. Jenne Duplicon-mediated microdeletions around the NF1 gene are frequently associated with a severe form of neurofibromatosis type I in a subgroup of patients who show an earlier onset of cutaneous neurofibromas, dysmorphic facial features, and lower IQ values. To clarify the discrepancies between published maps of the NF1 tumor-suppressor gene region as well as the length of gaps in these assemblies and to validate the recently described tandem duplication of the human NF1 locus, we assembled a contiguous high-density map of BAC and PAC clones from different genomic libraries. Although two WI-12393,derived low-copy fragments are known to occur at the proximal and distal boundaries of the 1.5-Mb segment that is usually deleted in NF1 microdeletion patients, we identified an additional WI-12393,related segment between the MGC13061 and the NF1 gene, which appears to trigger interstitial deletions of smaller size as observed in two patients. Moreover, we completed the genomic organization and cDNA structure of all functional genes, CYTOR4, FLJ12735, FLJ22729, CENTA2, MGC13061, NF1, OMG, EVI2B, EVI2A, KIAA1821, MGC11316, HCA66, KIAA0160, and WI-12393, from this region. A comparison of the human map to the orthologous region on mouse chromosome 11 revealed significant differences in the number and arrangement of genes, indicating that many chromosomal breaks with partial duplications, inversions, and deletions occurred predominantly in the primate lineage. © 2003 Wiley-Liss, Inc. [source] Isolation of mutations with dumpy-like phenotypes and of collagen genes in the nematode Pristionchus pacificusGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 3 2004Charlotte Kenning Abstract The nematode Pristionchus pacificus was developed as a satellite system in evolutionary developmental biology and forward and reverse genetic approaches allow a detailed comparison of various developmental processes between P. pacificus and Caenorhabditis elegans. To facilitate map-based cloning in P. pacificus, a genome map was generated including a genetic linkage map of ,300 molecular markers and a physical map of 10,000 BAC clones. Here, we describe the isolation and characterization of more than 40 morphological mutations that can be used as genetic markers. These mutations fall into 12 Dumpy genes and one Roller gene that represent morphological markers for all six P. pacificus chromosomes. Using an in silico approach, we identified ,150 hits of P. pacificus collagen genes in the available EST, BAC-end, and fosmid-end sequences. However, 1:1 orthologs could only be identified for fewer than 20 collagen genes. genesis 40:176,183, 2004. © 2004 Wiley-Liss, Inc. [source] Genetic Analysis and Molecular Mapping of a Rolling Leaf Mutation Gene in RiceJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 12 2007Ji-Cai Yi Abstract A rice mutant with rolling leaf, namely ,- rl, was obtained from M2 progenies of a native indica rice stable strain Qinghuazhan (QHZ) from mutagenesis of dry seeds by ,-rays. Genetic analysis using the F2 population from a cross between this mutant and QHZ indicated the mutation was controlled by a single recessive gene. In order to map the locus for this mutation, another F2 population with 601 rolling leaf plants was constructed from a cross between ,- rl and a japonica cultivar 02428. After primary mapping with SSR (simple sequence repeats) markers, the mutated locus was located at the short arm of chromosome 3, flanked by RM6829 and RM3126. A number of SSR, InDel (insertion/deletion) and SNP (single nucleotide polymorphism) markers within this region were further developed for fine mapping. Finally, two markers, SNP121679 and InDel422395, were identified to be flanked to this locus with genetic distances of 0.08 cM and 0.17 cM respectively, and two SNP markers, SNP75346 and SNP110263, were found to be co-segregated with this locus. These results suggested that this locus was distinguished from all loci for the rolling leaf mutation in rice reported so far, and thus renamed rl10(t). By searching the rice genome database with closely linked markers using BLAST programs, an e -physical map covering rl10(t) locus spanning about a 50 kb region was constructed. Expression analysis of the genes predicted in this region showed that a gene encoding putative flavin-containing monooxygenase (FMO) was silenced in ,- rl, thus this is the most likely candidate responsible for the rolling leaf mutation. [source] Giant Axonal Neuropathy Locus Refinement To A < 590 KB Critical IntervalJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001L Cavalier Giant axonal neuropathy (GAN) is a rare autosomal recessive neurodegenerative disorder, characterised clinically by the development of chronic distal polyneuropathy during childhood, mental retardation, kinky or curly hair, skeletal abnormalities and, ultrastructurally, by axons in the central and peripheral nervous systems distended by masses of tightly woven neurofilaments. We recently localised the CAN locus in 16q24.1 to a 5-cM interval between the D16S507 and D16S511 markers by homozygosity mapping in three consanguineous Tunisian families. We have now established a contig-based physical map of the region comprising YACs and BACs where we have placed four genes, ten ESTs, three STSs and two additional microsatellite markers, and where we have identified six new SSCP polymorphisms and six new microsatellite markers. Using these markers, we have refined the position of our previous flanking recombinants. We also identified a shared haplotype between two Tunisian families and a small region of homozygosity in a Turkish family with distant consanguinity, both suggesting the occurrence of historic recombinations and supporting the conclusions based on the phase-known recombinations. Taken together, these results allow us to establish a transcription map of the region, and to narrow down the GAN position to a < 590 kb critical interval, an important step toward the identification of the defective gene. [source] A major breakpoint cluster domain in murine radiation-induced acute myeloid leukemia,MOLECULAR CARCINOGENESIS, Issue 2 2002Rosemary Finnon Abstract Cytogenetic and molecular studies have provided evidence of the clustering of chromosome 2 deletion breakpoints in radiation-induced murine acute myeloid leukemia (AML). Moreover, clustering occurs in at least two fragile domains rich in telomere-like arrays. Here we describe a physical map of the distal breakpoint cluster and confirm the presence of inverted head-to-head telomeric sequence arrays. These potentially recombinogenic sequences were not, however, the direct focus for post-irradiation chromosome breakage in AML. Instead, the two arrays bordered a 2.5-kb sequence with properties expected of a nuclear matrix attachment region (MAR). The putative MAR co-localized in the fragile domain with genes important to the hemopoietic system (leukocyte tyrosine kinase, zinc finger protein 106, erythrocyte protein band 4.2, and ,2 -microglobulin (,2m)); the ,2m subdomain was a particular focus of breakage. On the basis of these and other data, we suggest that AML-associated chromosome 2 fragility in the mouse is a consequence of domain-specific fragility in genomic domains containing numerous genes critical to the hemopoietic system. Copyright © Crown Copyright 2002. Recorded with the permission of the controller of Her Majesty's Stationery Office. Published by Wiley-Liss, Inc. [source] Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschiiMOLECULAR MICROBIOLOGY, Issue 5 2002Sophie Maisnier-Patin Summary We analysed chromosome replication patterns in the two hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii by marker frequency analysis (MFA). For A. fulgidus, the central region of the chromosomal physical map displayed a higher relative abundance in gene dosage during exponential growth, with two continuous gradients to a region of lower abundance at the diametrically opposite side of the genome map. This suggests bidirectional replication of the A. fulgidus chromosome from a single origin. The organization of the putative replication origin region relative to the cdc6, mcm and DNA polymerase genes differed from that reported for Pyrococcus species. No single replication origin or termination regions could be identified for M. jannaschii, adding to the list of unusual properties of this organism. The organization of the A. fulgidus cell cycle was characterized by flow cytometry analysis of the samples from which genomic DNA was extracted for MFA. The relative lengths of the cell cycle periods were found to be similar to those of crenarchaea. [source] A 2.5-Mb contig constructed from Angus, Longhorn and horned Hereford DNA spanning the polled interval on bovine chromosome 1ANIMAL GENETICS, Issue 6 2006K. R. Wunderlich Summary The polled locus has been mapped by genetic linkage analysis to the proximal region of bovine chromosome 1. As an intermediate step in our efforts to identify the polled locus and the underlying causative mutation for the polled phenotype, we have constructed a BAC-based physical map of the interval containing the polled locus. Clones containing genes and markers in the critical interval were isolated from the TAMBT (constructed from Angus and Longhorn genomic DNA) and CHORI-240 (constructed from horned Hereford genomic DNA) BAC libraries and ordered based on fingerprinting and the presence or absence of 80 STS markers. A single contig spanning 2.5 Mb was assembled. Comparison of the physical order of STSs to the corresponding region of human chromosome 21 revealed the same order of genes within the polled critical interval. This contig of overlapping BAC clones from horned and polled breeds is a useful resource for SNP discovery and characterization of positional candidate genes. [source] The mapping of DFNB62, a new locus for autosomal recessive non-syndromic hearing impairment, to chromosome 12p13.2-p11.23CLINICAL GENETICS, Issue 5 2006G Ali Autosomal recessive non-syndromic hearing impairment (ARNSHI) is the most common form of prelingual inherited hearing impairment (HI). Here is described the mapping of a novel ARNSHI locus in a consanguineous Pakistani family with profound congenital HI. Two-point and multipoint linkage analyses were performed for the genome scan and fine mapping markers. Haplotypes were constructed to determine the region of homozygosity. At , = 0, the maximum two-point LOD score of 4.0 was obtained at marker AAC040. A maximum multipoint LOD score of 5.3 was derived at marker D12S320, with the three-unit support interval demarcated by D12S89 and D12S1042. The region of homozygosity is flanked by markers D12S358 and D12S1042, which corresponds to 22.4 cM according to the Rutgers combined linkage-physical map of the human genome and spans 15.0 Mb on the sequence-based physical map. A novel ARNSHI locus DFNB62 was mapped to chromosome 12p13.2-p11.23. DFNB62 represents the second ARNSHI locus to map to chromosome 12. [source] Annotated chromosome maps for renal disease,HUMAN MUTATION, Issue 3 2009Amy Jayne McKnight Abstract A combination of linkage analyses and association studies are currently employed to promote the identification of genetic factors contributing to inherited renal disease. We have standardized and merged complex genetic data from disparate sources, creating unique chromosomal maps to enhance genetic epidemiological investigations. This database and novel renal maps effectively summarize genomic regions of suggested linkage, association, or chromosomal abnormalities implicated in renal disease. Chromosomal regions associated with potential intermediate clinical phenotypes have been integrated, adding support for particular genomic intervals. More than 500 reports from medical databases, published scientific literature, and the World Wide Web were interrogated for relevant renal-related information. Chromosomal regions highlighted for prioritized investigation of renal complications include 3q13,26, 6q22,27, 10p11,15, 16p11,13, and 18q22. Combined genetic and physical maps are effective tools to organize genetic data for complex diseases. These renal chromosome maps provide insights into renal phenotype-genotype relationships and act as a template for future genetic investigations into complex renal diseases. New data from individual researchers and/or future publications can be readily incorporated to this resource via a user-friendly web-form accessed from the website: www.qub.ac.uk/neph-res/CORGI/index.php. Hum Mutat 0, 1,8, 2008. © 2008 Wiley-Liss, Inc. [source] A Review of Statistical Methods for Genome MappingINTERNATIONAL STATISTICAL REVIEW, Issue 1 2000Hywel B. Jones Summary Framework maps of the human genome are an important staging post in the on-going effort to sequence the entire genome. The existence of high quality maps is also a prerequistite for studies attempting to determine the location of genes involved in common diseases. The basic experimental approaches to constructing both genetic and physical maps are briefly described as well as their respective uses. A variety of statistical approaches to map construction are outlined including parsimony, maximum likelihood and Bayesian methodologies. The mostly widely used of these, the method of maximum likelihood, is discussed in detail, particularly in the context of physical mapping using radiation hybrids. Finally, current statistical issues and problems in the field of genome mapping are described. Résumé Des cartes squelette du génome humain sont une étape, important dans l'effort actuel pour séquecer, le génome tout entier. L'existence de cartes de bonne qualité est aussi la condition d'études visant à localiser les génes, interwenant dans des maladies courantes. Les approches expérimentales de base pour construire tant des cartes génétigues, que physiques sont briévement, décrites ainsi que leurs usages respectifs. Plusieurs méthodes, statistiques de cartographie sont mises en relief: notamment celles de parcimonie, du maximum de vraisemblance et bayésiennce.La plus largement utilisée-laméthode, du maximum de vraisemblance-est examinéen détail, particuliérement pour la cartographue physique utilisant des phybrides d'irradiation Enfin sont abordés, divers questions et probémes, courants on matiéde cartographie génétique. [source] BAC-based upgrading and physical integration of a genetic SNP map in Atlantic salmonANIMAL GENETICS, Issue 1 2010S. Lorenz Summary A better understanding of the genotype,phenotype correlation of Atlantic salmon is of key importance for a whole range of production, life history and conservation biology issues attached to this species. High-density linkage maps integrated with physical maps and covering the complete genome are needed to identify economically important genes and to study the genome architecture. Linkage maps of moderate density and a physical bacterial artificial chromosome (BAC) fingerprint map for the Atlantic salmon have already been generated. Here, we describe a strategy to combine the linkage mapping with the physical integration of newly identified single nucleotide polymorphisms (SNPs). We resequenced 284 BAC-ends by PCR in 14 individuals and detected 180 putative SNPs. After successful validation of 152 sequence variations, genotyping and genetic mapping were performed in eight salmon families comprising 376 individuals. Among these, 110 SNPs were positioned on a previously constructed linkage map containing SNPs derived from expressed sequence tag (EST) sequences. Tracing the SNP markers back to the BACs enabled the integration of the genetic and physical maps by assigning 73 BAC contigs to Atlantic salmon linkage groups. [source] |