Physical Forces (physical + force)

Distribution by Scientific Domains


Selected Abstracts


ERK activation by mechanical strain is regulated by the small G proteins rac-1 and rhoA

EXPERIMENTAL DERMATOLOGY, Issue 2 2004
Julien Laboureau
Abstract: Physical forces play an important role in regulating cell functions. We applied mechanical strain to human fibroblasts by magnetic attraction of superparamagnetic arginine-glycine-aspartic acid (RGD)-coated beads. We confirmed that the MAP kinases Erk and p38 are activated by mechanical strain, and went further by demonstrating the activation of Elk-1 by mechanical strain, mainly through a MEK-Erk pathway. Transfection of a dominant negative form of the G protein rac-1 (rac T17N), and inhibition of PI3K, an effector of rac-1, efficiently prevented Elk-1 activation by mechanical forces. Transfection with C3 transferase, known to inhibit rhoA, and inhibition of rock (a downstream effector of rhoA), gave similar results. However, contrary to the active form of rhoA (rho G14V), transfection of the active form of rac-1 (rac G12V) induced Elk activation and mimicked the effects of mechanical strain. These results point out that the two small G proteins rhoA and rac-1 participate in cell sensitivity to mechanical strain and lead to the modulation of the Erk pathway. [source]


Riverine landscapes: taking landscape ecology into the water

FRESHWATER BIOLOGY, Issue 4 2002
JOHN A. WIENS
1.,Landscape ecology deals with the influence of spatial pattern on ecological processes. It considers the ecological consequences of where things are located in space, where they are relative to other things, and how these relationships and their consequences are contingent on the characteristics of the surrounding landscape mosaic at multiple scales in time and space. Traditionally, landscape ecologists have focused their attention on terrestrial ecosystems, and rivers and streams have been considered either as elements of landscape mosaics or as units that are linked to the terrestrial landscape by flows across boundaries or ecotones. Less often, the heterogeneity that exists within a river or stream has been viewed as a `riverscape' in its own right. 2.,Landscape ecology can be unified about six central themes: (1) patches differ in quality (2) patch boundaries affect flows, (3) patch context matters, (4) connectivity is critical, (5) organisms are important, and (6) the importance of scale. Although riverine systems differ from terrestrial systems by virtue of the strong physical force of hydrology and the inherent connectivity provided by water flow, all of these themes apply equally to aquatic and terrestrial ecosystems, and to the linkages between the two. 3.,Landscape ecology therefore has important insights to offer to the study of riverine ecosystems, but these systems may also provide excellent opportunities for developing and testing landscape ecological theory. The principles and approaches of landscape ecology should be extended to include freshwater systems; it is time to take the `land' out of landscape ecology. [source]


John Thelwall and the Politics of Sympathy

LITERATURE COMPASS (ELECTRONIC), Issue 9 2010
Mary Fairclough
John Thelwall's diverse achievements in the fields of literature, science and politics have been read as the reason for his omission from the Romantic literary canon. But Thelwall's scientific research arms him with a unique understanding of the connections between these disciplines, which upset the very notion of canonicity. Thelwall's model of sympathy, developed in his Essay Towards a Definition of Animal Vitality (1791) offers a physiological understanding of the term which he applies to radical effect in his literary and political works. For Thelwall, sympathy is the physical force through which one organ of the body is inextricably connected with the rest. This physical model radicalises the sentimental tropes Thelwall employs in The Peripatetic (1793), where benevolence is figured as an instinctive impulse. In Thelwall's political lectures, sympathy is an index of solidarity, but its rational, material basis offers a riposte to charges that Thelwall seeks to exploit the unruly energies of his audience. Thelwall figures sympathy instead as the medium for his political ideal, the diffusion of information and ideas. [source]


Schema-driven information processing in judgements about rape

APPLIED COGNITIVE PSYCHOLOGY, Issue 5 2007
Barbara Krahé
Two studies addressed the impact of rape schemata on judgements about rape cases. In Study 1, 286 undergraduate students rated perpetrator and victim blame for five rape scenarios and completed the Perceived Causes of Rape Scale. Most blame was assigned to victims of an ex-partner rape, followed by acquaintance and stranger rape. Least blame was assigned to perpetrators of ex-partner rapes, followed by acquaintance and stranger rapes. Female precipitation beliefs increased victim blame and reduced perpetrator blame. In Study 2, 158 students rated rape scenarios that varied in victim perpetrator relationship and coercive strategy and completed a measure of Female Precipitation Beliefs. Half expected to be held accountable for their judgements. The perpetrator was held less liable and the victim blamed more when the perpetrator exploited the victim's incapacitated state versus using physical force. Accountability instruction reduced the impact of female precipitation beliefs on perceived perpetrator liability and victim blame. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Mechanics and function in heart morphogenesis

DEVELOPMENTAL DYNAMICS, Issue 2 2005
Thomas Bartman
Abstract For years, biomechanical engineers have studied the physical forces involved in morphogenesis of the heart. In a parallel stream of research, molecular and developmental biologists have sought to identify the molecular pathways responsible for embryonic heart development. Recently, several studies have shown that these two avenues of research should be integrated to explain how genes expressed in the heart regulate early heart function and affect physical morphogenetic steps, as well as to conversely show how early heart function affects the expression of genes required for morphogenesis. This review combines the perspectives of biomechanical engineering and developmental biology to lay out an integrated view of the role of mechanical forces in heart development. Developmental Dynamics 233:373,381, 2005. © 2005 Wiley-Liss, Inc. [source]


Human Vulnerability, Dislocation and Resettlement: Adaptation Processes of River-bank Erosion-induced Displacees in Bangladesh

DISASTERS, Issue 1 2004
David Mutton
The purpose of this research was to identify and analyse patterns of economic and social adaptation among river-bank erosion-induced displacees in Bangladesh. It was hypothesised that the role of social demographic and socio-economic variables in determining the coping ability and recovery of the river-bank erosion-induced displacees is quite significant. The findings of the research reveal that displacees experience substantial socio-economic impoverishment and marginalisation as a consequence of involuntary migration. This in part is a socially constructed process, reflecting inequitable access to land and other resources. Vulnerability to disasters is further heightened by a number of identifiable social and demographic factors including gender, education and age, although extreme poverty and marginalisation create complexity to isolate the relative influence of these variables. The need to integrate hazard analysis and mitigation with the broader economic and social context is discussed. It is argued that the capacity of people to respond to environmental threats is a function of not only the physical forces which affect them, but also of underlying economic and social relationships which increase human vulnerability to risk. Hazard analysis and mitigation can be more effective when it takes into account such social and demographic and socio-economic dimensions of disasters. [source]


Capillary Force Lithography: A Versatile Tool for Structured Biomaterials Interface Towards Cell and Tissue Engineering,

ADVANCED FUNCTIONAL MATERIALS, Issue 17 2009
Kahp-Yang Suh
Abstract This Feature Article aims to provide an in-depth overview of the recently developed molding technologies termed capillary force lithography (CFL) that can be used to control the cellular microenvironment towards cell and tissue engineering. Patterned polymer films provide a fertile ground for controlling various aspects of the cellular microenvironment such as cell,substrate and cell,cell interactions at the micro- and nanoscale. Patterning thin polymer films by molding typically involves several physical forces such as capillary, hydrostatic, and dispersion forces. If these forces are precisely controlled, the polymer films can be molded into the features of a polymeric mold with high pattern fidelity and physical integrity. The patterns can be made either with the substrate surface clearly exposed or unexposed depending on the pattern size and material properties used in the patterning. The former (exposed substrate) can be used to adhere proteins or cells on pre-defined locations of a substrate or within a microfluidic channel using an adhesion-repelling polymer such as poly(ethylene glycol) (PEG)-based polymer and hyaluronic acid (HA). Also, the patterns can be used to co-culture different cells types with molding-assisted layer-by-layer deposition. In comparison, the latter (unexposed substrate) can be used to control the biophysical surrounding of a cell with tailored mechanical properties of the material. The surface micropatterns can be used to engineer cellular and multi-cellular architecture, resulting in changes of the cell shape and the cytoskeletal structures. Also, the nanoscale patterns can be used to affect various aspects of the cellular behavior, such as adhesion, proliferation, migration, and differentiation. [source]


Potential and Bottlenecks of Bioreactors in 3D Cell Culture and Tissue Manufacturing

ADVANCED MATERIALS, Issue 32-33 2009
David Wendt
Abstract Over the last decade, we have witnessed an increased recognition of the importance of 3D culture models to study various aspects of cell physiology and pathology, as well as to engineer implantable tissues. As compared to well-established 2D cell-culture systems, cell/tissue culture within 3D porous biomaterials has introduced new scientific and technical challenges associated with complex transport phenomena, physical forces, and cell,microenvironment interactions. While bioreactor-based 3D model systems have begun to play a crucial role in addressing fundamental scientific questions, numerous hurdles currently impede the most efficient utilization of these systems. We describe how computational modeling and innovative sensor technologies, in conjunction with well-defined and controlled bioreactor-based 3D culture systems, will be key to gain further insight into cell behavior and the complexity of tissue development. These model systems will lay a solid foundation to further develop, optimize, and effectively streamline the essential bioprocesses to safely and reproducibly produce appropriately scaled tissue grafts for clinical studies. [source]


Colon cancer cell adhesion in response to Src kinase activation and actin-cytoskeleton by non-laminar shear stress,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004
Vijayalakshmi Thamilselvan
Abstract Malignant cells shed from tumors during surgical resection or spontaneous metastasis experience physical forces such as shear stress and turbulence within the peritoneal cavity during irrigation, laparoscopic air insufflation, or surgical manipulation, and within the venous or lymphatic system. Since physical forces can activate intracellular signals that modulate the biology of various cell types in vitro, we hypothesized that shear stress and turbulence might increase colon cancer cell adhesion to extracellular matrix, potentiating metastatic implantation. Primary human malignant colon cancer cells isolated from resected tumors and SW620 were subjected to shear stress and turbulence by stirring cells in suspension at 600 rpm for 10 min. Shear stress for 10 min increased subsequent SW620 colon cancer cell adhesion by 40.0,±,3.0% (n,=,3; P,<,0.001) and primary cancer cells by 41.0,±,3.0% to collagen I when compared to control cells. In vitro kinase assay (1.5,±,0.13 fold) and Western analysis (1.34,±,0.04 fold) demonstrated a significant increase in Src kinase activity in cells exposed shear stress. Src kinase inhibitors PP1 (0.1 µM), PP2 (20 µM), and actin-cytoskeleton stabilizer phalloidin (10 µM) prevented the shear stress stimulated cell adhesion to collagen I. Furthermore, PP2 inhibited basal (50.0,±,2.8%) and prevented shear stress induced src activation but phalloidin pretreatment did not. These results raise the possibility that shear stress and turbulence may stimulate the adhesion of malignant cells shed from colon cancers by a mechanism that requires both actin-cytoskeletal reorganization an independent physical force activation of Src kinase. Blocking this pathway might reduce tumor metastasis during surgical resection. Published 2004 Wiley-Liss, Inc. [source]


Phenotypic comparison of periodontal ligament cells in vivo and in vitro

JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2001
P. Lekic
The mammalian periodontal ligament contains heterogeneous populations of connective tissue cells, the precise function of which is poorly understood. Despite close proximity to bone and the application of high amplitude physical forces, cells in the periodontal ligament (PL) are capable of expressing regulatory factors that maintain PL width during adult life. The study of PL homeostasis and PL cell differentiation requires culture and phenotypic methods for precise characterization of PL cell populations, in particular those cells with an inherently osteogenic program. Currently it is unknown if cells cultured from the PL are phenotypically similar to the parental cells that are present in the tissues. We have compared the phenotype of cells in vivo with cells derived from the PL and expanded in vitro to assess the general validity of in vitro models for the study of phenotypic regulation in vivo. Rat PL cells were isolated by either scraping the root of the extracted first mandibular molars (Group A), or by scraping the alveolar socket following extraction of first mandibular molars (Group B), or by obtaining a mixture of cells after disaggregating a block of tissue consisting of first mandibular molar, PL and the surrounding alveolar bone (Group C). Cultured cells at confluence were fixed and immunostained for ,-smooth muscle actin (,-SMA), osteopontin (OPN), alkaline phosphatase (AP), or bone sialoprotein (BSP). For in vivo assessments, frontal sections of rat first mandibular molar were immunostained for ,-SMA, OPN, AP and BSP. We examined osteogenic differentiation of cultured PL cell cultures by bone nodule-forming assays. In vivo and at all examined sites, >68% of PL cells were immunostained for AP; ,50% and ,51% for OPN and ,-SMA (p=0.3), respectively, while only ,8% were positively stained for BSP (p<0.01). Analysis of cultured PL cells in Groups A, B and C showed 54%, 53% and 56% positive staining for ,-SMA respectively; 51%, 56%, 54% for OPN; 66%, 70%, 69% for AP and 2.2%, 1.4% and 2.8% for BSP. The mean percentage of PL cells in situ stained for the different markers was similar to that of cultured PL cells (Group A,Group B,Group C in situ for p>0.2) except for BSP which was 3 to 4 fold higher in vivo(p<0.01). PL cell cultures treated with dexamethasone showed mineralized tissue formation for all groups (A, B, C), but no mineralized tissue formation was detected in the absence of dexamethasone. As PL cells express quantitatively similar phenotypes in vitro and in vivo, we conclude that the in vitro models used here for assessment of PL cell differentiation appear to be appropriate and are independent of the cell sampling method. Further, dexamethasone-dependent progenitors are present both on the root and bone-related sides of the PL. [source]


Response of periodontal ligament fibroblasts and gingival fibroblasts to pulsating fluid flow: nitric oxide and prostaglandin E2 release and expression of tissue non-specific alkaline phosphatase activity

JOURNAL OF PERIODONTAL RESEARCH, Issue 6 2000
M. T. M. Van Der Pauw
The capacity of the periodontal ligament to alter its structure and mass in response to mechanical loading has long been recognized. However, the mechanism by which periodontal cells can detect physical forces and respond to them is largely unknown. Besides transmission of forces via cell-matrix or cell-cell interactions, the strain-derived flow of interstitial fluid through the periodontal ligament may mechanically activate the periodontal cells, as well as ensure transport of cell signaling molecules, nutrients and waste products. Mechanosensory cells, such as endothelial and bone cells, are reported to respond to a flow of fluid with stimulated prostaglandin E2(PGE2) and nitric oxide production. Therefore, we examined the PGE2 and nitric oxide response of human periodontal ligament and gingival fibroblasts to pulsating fluid flow and assessed the expression of tissue non-specific alkaline phosphatase activity. Periodontal ligament and gingival fibroblasts were subjected to a pulsating fluid flow (0.7±0.02 Pa, 5 Hz) for 60 min. PGE2 and nitric oxide concentrations were determined in the conditioned medium after 5, 10, 30 and 60 min of flowing. After fluid flow the cells were cultured for another 60 min without mechanical stress. Periodontal ligament fibroblasts, but not gingival fibroblasts, responded to fluid flow with significantly elevated release of nitric oxide and decreased expression of tissue non-specific alkaline phosphatase activity. In both periodontal ligament and gingival fibroblasts, PGE2 production was significantly increased after 60 min of flowing. Periodontal ligament fibroblasts, but not gingival fibroblasts, produced significantly higher levels of PGE2 during the postflow culture period. We conclude that human periodontal ligament fibroblasts are more responsive to pulsating fluid flow than gingival fibroblasts. The similarity of the early nitric oxide and PGE2 responses to fluid flow in periodontal fibroblasts with bone cells and endothelial cells suggests that these three cell types possess a similar sensor system for fluid shear stress. [source]


Effects of mechanical loading on collagen propeptides processing in cartilage repair

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 1 2010
Rosmarie Hardmeier
Abstract Injured articular cartilage has poor reparative capabilities and if left untreated may develop into osteoarthritis. Unsatisfactory results with conventional treatment methods have brought as an alternative treatment the development of matrix autologous chondrocyte transplants (MACTs). Recent evidence proposes that the maintenance of the original phenotype by isolated chondrocytes grown in a scaffold transplant is linked to mechanical compression, because macromolecules, particularly collagen, of the extracellular matrix have the ability to ,self-assemble'. In load-bearing tissues, collagen is abundantly present and mechanical properties depend on the collagen fibre architecture. Study of the active changes in collagen architecture is the focus of diverse fields of research, including developmental biology, biomechanics and tissue engineering. In this review, the structural model of collagen assembly is presented in order to understand how scaffold geometry plays a critical role in collagen propeptide processing and chondrocyte development. When physical forces are applied to different cell-based scaffolds, the resulting specific twist of the scaffolds might be accompanied by changes in the fibril pattern synthesis of the new collagen. The alteration in the scaffolds due to mechanical stress is associated with cellular signalling communication and the preservation of N-terminus procollagen moieties, which would regulate both the collagen synthesis and the diameter of the fibre. The structural difference would also affect actin stabilization, cytoskeleton remodelling and proteoglycan assembly. These effects seemed to be dependent on the magnitude and duration of the physical stress. This review will contribute to the understanding of mechanisms for collagen assembly in both a natural and an artificial environment. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Role of physical forces in regulating the form and function of the periodontal ligament

PERIODONTOLOGY 2000, Issue 1 2000
CHRISTOPHER A. G. MCCULLOCH
First page of article [source]


Increased friction coefficient and superficial zone protein expression in patients with advanced osteoarthritis

ARTHRITIS & RHEUMATISM, Issue 9 2010
C. P. Neu
Objective To quantify the concentration of superficial zone protein (SZP) in the articular cartilage and synovial fluid of patients with advanced osteoarthritis (OA) and to further correlate the SZP content with the friction coefficient, OA severity, and levels of proinflammatory cytokines. Methods Samples of articular cartilage and synovial fluid were obtained from patients undergoing elective total knee replacement surgery. Additional normal samples were obtained from donated body program and tissue bank sources. Regional SZP expression in cartilage obtained from the femoral condyles was quantified by enzyme-linked immunosorbent assay (ELISA) and visualized by immunohistochemistry. Friction coefficient measurements of cartilage plugs slid in the boundary lubrication system were obtained. OA severity was graded using histochemical analyses. The concentrations of SZP and proinflammatory cytokines in synovial fluid were determined by ELISA. Results A pattern of SZP localization in knee cartilage was identified, with load-bearing regions exhibiting high SZP expression. SZP expression patterns were correlated with friction coefficient and OA severity; however, SZP expression was observed in all samples at the articular surface, regardless of OA severity. SZP expression and aspirate volume of synovial fluid were higher in OA patients than in normal controls. Expression of cytokines was elevated in the synovial fluid of some patients. Conclusion Our findings indicate a mechanochemical coupling in which physical forces regulate OA severity and joint lubrication. The findings of this study also suggest that SZP may be ineffective in reducing joint friction in the boundary lubrication mode at an advanced stage of OA, where other mechanisms may dominate the observed tribological behavior. [source]


Biological consequences of tightly bent DNA: The other life of a macromolecular celebrity

BIOPOLYMERS, Issue 2 2007
Hernan G. Garcia
Abstract The mechanical properties of DNA play a critical role in many biological functions. For example, DNA packing in viruses involves confining the viral genome in a volume (the viral capsid) with dimensions that are comparable to the DNA persistence length. Similarly, eukaryotic DNA is packed in DNA,protein complexes (nucleosomes), in which DNA is tightly bent around protein spools. DNA is also tightly bent by many proteins that regulate transcription, resulting in a variation in gene expression that is amenable to quantitative analysis. In these cases, DNA loops are formed with lengths that are comparable to or smaller than the DNA persistence length. The aim of this review is to describe the physical forces associated with tightly bent DNA in all of these settings and to explore the biological consequences of such bending, as increasingly accessible by single-molecule techniques. © 2006 Wiley Periodicals, Inc. Biopolymers 85:115,130, 2007. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Do physical forces contribute to cryodamage?

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009
Joseph Saragusty
Abstract To achieve the ultimate goal of both cryosurgery and cryopreservation, a thorough understanding of the processes responsible for cell and tissue damage is desired. The general belief is that cells are damaged primarily due to osmotic effects at slow cooling rates and intracellular ice formation at high cooling rates, together termed the "two factor theory." The present study deals with a third, largely ignored component,mechanical damage. Using pooled bull sperm cells as a model and directional freezing in large volumes, samples were frozen in the presence or absence of glass balls of three different diameters: 70,110, 250,500, and 1,000,1,250,µm, as a means of altering the surface area with which the cells come in contact. Post-thaw evaluation included motility at 0,h and after 3,h at 37°C, viability, acrosome integrity, and hypoosmotic swelling test. Interactions among glass balls, sperm cells, and ice crystals were observed by directional freezing cryomicroscopy. Intra-container pressure in relation to volume was also evaluated. The series of studies presented here indicate that the higher the surface area with which the cells come in contact, the greater the damage, possibly because the cells are squeezed between the ice crystals and the surface. We further demonstrate that with a decrease in volume, and thus increase in surface area-to-volume ratio, the intra-container pressure during freezing increases. It is suggested that large volume freezing, given that heat dissipation is solved, will inflict less cryodamage to the cells than the current practice of small volume freezing. Biotechnol. Bioeng. 2009; 104: 719,728 © 2009 Wiley Periodicals, Inc. [source]