Home About us Contact | |||
Photothermal Treatment (photothermal + treatment)
Selected AbstractsRewritable Holographic Structures Formed in Organic,Inorganic Hybrid Materials by Photothermal ProcessingADVANCED FUNCTIONAL MATERIALS, Issue 16 2009Hiroshi Kakiuchida Abstract Holographic and direct-written structures are fabricated in tin-doped silicophosphite thin plates containing rhodamine 6G dye by a photothermal process based on the principle of glass softening/frozen-in behavior. To be highly processable by photothermal treatment and stable at room temperature after processing, the intrinsic viscoelastic property is improved by increasing the crosslinking density of the network structure, and the photothermal conditions for efficient transfer of the irradiated photons to thermal phonons are explored. Then, the excellent rewritability and reliability of the fine processed structure are found by examining the writing/erasing repetition. Furthermore, the origins of the changes in refractive index due to photothermal treatment are classified into density change and photobleaching, and the dynamics of the formation process of holographic gratings are studied by measuring refractive index changes as functions of irradiation time and wavelength. As a result, it is found that the holographic structure consists of spatial modulation of the refractive index and the refractive index change results primarily from the change in the frozen structure, although there is a slight influence by photobleaching. [source] Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial CancerADVANCED MATERIALS, Issue 43 2009Jaemoon Yang Near-infrared-light-sensitive multifunctional smart drug-loaded polymer gold nanoshells are fabricated as advanced prototypes, composed of chemotherapeutic agents (therapeutic antibody and anticancer drug-loaded polymeric nanoparticles) for systemic chemotherapy of human epithelial cancer and a polymer-based gold nanoshell for localized photothermal treatment by NIR light. [source] Gold Nanocages for Biomedical Applications,ADVANCED MATERIALS, Issue 20 2007E. Skrabalak Abstract Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. [source] Synergistic photodynamic and photothermal treatment of port-wine stain?LASERS IN SURGERY AND MEDICINE, Issue 2 2004Sol Kimel PhD No abstract is available for this article. [source] |