Home About us Contact | |||
Photosystem II (photosystem + ii)
Selected AbstractsThe function of D1-H332 in Photosystem II electron transport studied by thermoluminescence and chlorophyll fluorescence in site-directed mutants of Synechocystis 6803FEBS JOURNAL, Issue 17 2004Yagut Allahverdiyeva The His332 residue of the D1 protein has been identified as the likely ligand of the catalytic Mn ions in the water oxidizing complex (Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J. & Iwata, S. (2004) Science 303, 1831,1838). However, its function has not been fully clarified. Here we used thermoluminescence and flash-induced chlorophyll fluorescence measurements to characterize the effect of the D1-H333E, D1-H332D and D1-H332S mutations on the electron transport of Photosystem II in intact cells of the cyanobacterium Synechocystis 6803. Although the mutants are not photoautotrophic they all show flash-induced thermoluminescence and chlorophyll fluorescence, which originate from the S2QA, and S2QB, recombinations demonstrating that charge stabilization takes place in the water oxidizing complex. However, the conversion of S2 to higher S states is inhibited and the energetic stability of the S2QA, charge pair is increased by 75, 50 and 7 mV in the D1-H332D, D1-H332E and D1-H332S mutants, respectively. This is most probably caused by a decrease of Em(S2/S1). Concomitantly, the rate of electron donation from Mn to Tyr-Z, during the S1 to S2 transition is slowed down, relative to the wild type, 350- and 60-fold in the D1-H332E and D1-H332D mutants, respectively, but remains essentially unaffected in D1-H332S. A further effect of the D1-H332E and D1-H332D mutations is the retardation of the QA to QB electron transfer step as an indirect consequence of the donor side modification. Our data show that although the His residue in the D1-332 position can be substituted by other metal binding residues for binding photo-oxidisable Mn it is required for controlling the functional redox energetics of the Mn cluster. [source] Response of Photosynthesis and Water Relations of Rice (Oryza sativa) to Elevated Atmospheric Carbon Dioxide in the Subhumid Zone of Sri LankaJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 2 2003W. A. J. M. De Costa Abstract The objective of the present paper is to determine the response of the physiological parameters related to biomass production and plant water relations in a standard Sri Lankan rice (Oryza sativa) variety (BG-300) to elevated CO2 (i.e. 570 µmol/mol). During two seasons, rice crops were grown under three different experimental treatments; namely, at 570 µmol/mol (i.e. ,elevated') and 370 µmol/mol (,ambient') CO2 within open top chambers, and at ambient CO2 under open field conditions. Leaf net photosynthetic rate in the elevated treatment increased by 22,75 % in comparison to the ambient. However, the ratio between intercellular and ambient CO2 concentrations remained constant across different CO2 treatments and seasons. CO2 enrichment decreased individual leaf stomatal conductance and transpiration rate per unit leaf area, and increased both leaf and canopy temperatures. However, the overall canopy stomatal conductance and daily total canopy transpiration rate of the elevated treatment were approximately the same as those achieved under ambient conditions. This was because of the significantly greater leaf area index and greater leaf,air vapour pressure deficit under CO2 enrichment. The leaf chlorophyll content increased significantly under elevated CO2; however, the efficiency (i.e. photochemical yield) of light energy capture by Photosystem II (i.e. Fv/Fm) in chlorophyll a did not show a significant and consistent variation with CO2 enrichment. [source] Ultraviolet Resonance Raman Microprobe Spectroscopy of Photosystem IIPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2008Jun Chen Photosystem II (PSII) carries out photosynthetic oxygen production and is responsible for the maintenance of aerobic, heterotrophic life. In PSII, protein amino acid residues play an important role in the light-driven electron transfer reactions. Here, we describe an approach to enhancing vibrational signals from PSII proteins through ultraviolet resonance Raman (UVRR) and a microprobe jet flow technique. Our work shows that pump-probe UVRR can be used to monitor intermediates during photosynthetic oxygen evolution. [source] Changes in the Room-temperature Emission Spectrum of Chlorophyll During Fast and Slow Phases of the Kautsky Effect in Intact Leaves,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Fabrice Franck ABSTRACT Changes in the room-temperature emission spectrum of chlorophyll (Chl) were analyzed using fast diode-array recordings during the Kautsky effect in mature and in greening barley leaves. In mature leaves, the comparison of Fo (basal level of fluorescence yield at transient O) and FM (maximum level of fluorescence yield at transient M) spectra showed that the relative amplitude of total variable fluorescence was maximal for the 684 nm Photosystem II (PSII) band and minimal for the 725 nm Photosystem I band. During the increase from Fo to FM a progressive redshift of the spectrum of variable fluorescence occurred. This shift reflected the different fluorescence rise kinetics of different layers of chloroplasts inside the leaf. This was verified by simulating the effect of screening on the emission spectrum of isolated chloroplasts and by experiments on greening leaves with low Chl content. In addition, experiments performed at different greening stages showed that the presence of uncoupled Chl at early-greening stages and lightharvesting complex II (LHCII) at later stages have detectable but minor effects on the shape of room-temperature emission spectra. When strong actinic light was applied to mature green leaves, the slow fluorescence yield, which declined from FM to FT (steady-state level of fluorescence yield at transient T), was accompanied by a slight redshift of the 684 nm PSII band because of nonphotochemical quenching of short-wavelengthemitting Chl ascribed to LHCII. [source] Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oatsPLANT BREEDING, Issue 5 2001F. Rizza Abstract The efficiency of the excitation capture by open Photosystem II (PSII) reaction centres was measured by the Fv/Fm ratios in a collection of winter and spring oats in order to assess the effects of hardening and freezing on the functionality of PSII and also the suitability of a chlorophyll fluorescence-based method to screen oat cultivars for frost tolerance. A significant reversible decrease in Fv/Fm was found in all genotypes during acclimation to low, non-freezing temperatures. Fv/Fm analysis appears to be an attractive test for the evaluation of frost tolerance in oats, being rapid, non-invasive and capable of monitoring a trait related to a crucial stage in the acquisition of frost tolerance. It is more sensitive and precise than other standard methods and highly correlated with field-evaluated frost damage. The measurements made during recovery 1 or 2 days after stress when the visual symptoms are not yet expressed, were especially advantageous because of the large variability in genotype response. The r-values (close to 0.8) were reduced due to the non-standard behaviour of the winter cultivar ,Aintree'. The cold acclimation response of this genotype has been analysed in detail and the limits of artificial freezing tests are discussed. [source] Direct Detection of Oxygen Ligation to the Mn4Ca Cluster of Photosystem II by X-ray Emission Spectroscopy,ANGEWANDTE CHEMIE, Issue 4 2010Yulia Pushkar Dr. O im Blick: Mn-K,2,5 - und -K,,,-Emissionsspektren entstehen durch Übergänge von den Ligand-2s- und -2p-Schalen der Metallkomplexe in die 1s-Metallniveaus. Auf diese Weise konnten die O-Liganden des Mn4Ca-Clusters untersucht werden, der die photosynthetische Wasserspaltung katalysiert, was erstmals den direkten Nachweis der verbrückenden Oxogruppen an Mn ermöglichte. [source] A Structure-Consistent Mechanism for Dioxygen Formation in Photosystem IICHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2008Abstract In recent DFT studies a new mechanism for OO bond formation at the oxygen evolving center (OEC) in photosystem II has been suggested. With the structure of the S4 state required for that mechanism, the structures of the lower S states are investigated herein by adding protons and electrons. A model was used including the full amino acids for the ones ligating the OEC, and in which the backbone positions were held fixed from the X-ray structure. The only charged second-shell ligand Arg357 was also included. An optimized structure for the S1 state was reached with a large similarity to one of those suggested by EXAFS. A full catalytic cycle was derived which can rationalize the structural relaxation in the S2 to S3 transition, and the fact that only an electron leaves in the transition before. Water is suggested to bind to the OEC in the S2 to S3, and S4 to S0 transitions. A new possibility for water exchange is suggested from the final energy diagram. The optimal OO bond formation occurs between an oxygen radical and an oxo ligand. The alternative mechanism, where the oxygen radical reacts with an external water, has a barrier about 20,kcal,mol,1 higher. [source] Primary Photophysical Processes in Photosystem II: Bridging the Gap between Crystal Structure and Optical SpectraCHEMPHYSCHEM, Issue 6 2010Thomas Renger Prof. Dr. Abstract This Minireview summarizes our current knowledge of the optical properties of photosystem II (PS-II) and how these properties are related to the photosynthetic function, that is, excitation energy transfer from the antenna complexes to the reaction center (RC) and the subsequent transmembrane charge separation in the latter. Interpretation of the optical spectra of PS-II is much more difficult than for the RC of purple bacteria, due to the "spectral congestion" problem, namely, the strong spectral overlap of optical bands in PS-II. Recent developments in deciphering the optical properties of the pigments in PS-II, the identification of functional states, and the kinetic details of the primary excitation energy and charge-transfer reactions are summarized. The spectroscopic term P680 that is generally used in the literature no longer indicates the same entity in its cationic and singlet excited form but different subsets of the six innermost pigments of the RC. The accessory chlorophyll ChlD1 forms a sink for singlet excitation and triplet energy and most likely represents the primary electron donor in PS-II. In this respect, a special chlorophyll monomer in PS-II plays the role of the special pair in purple bacteria. Evidence that exciton transfer between the core antenna complexes CP43 and CP47 and the RC is the bottleneck for the overall photochemical trapping of excitation energy in PS-II is discussed. A short summary is provided of PS-II of Acaryochloris marina, which mainly contains chlorophyll d instead of the usual chlorophyll a. This system does not suffer from the spectral congestion problem and, therefore, represents an interesting model system. The final part of this Minireview provides a discussion of challenging problems to be solved in the future. [source] Fathers, fruits and photosynthesis: pollen donor effects on fruit photosynthesis in wild parsnipECOLOGY LETTERS, Issue 11 2003Arthur R. Zangerl Abstract Chlorophyll is frequently present in plant reproductive tissues and indicates that photosynthesis is occurring in these parts. Photosynthesis by a reproductive organ can contribute as much as 65% to its own growth. Given the advantages that increased photosynthetic rates might have on development of individual seeds competing for resources, selection can be expected to favour the ability of offspring to influence photosynthetic rates of the tissues surrounding them. We report in this study the first evidence that the pollen genotype can influence the rate of photosynthesis in the fruit tissues surrounding the developing offspring. Using a novel chlorophyll fluorescence imaging instrument to quantify quantum efficiency of photosystem II, we found significant differences in photosynthetic rates among fruits in wild parsnip, Pastinaca sativa L, associated with different pollen genotypes. [source] Changes in the potential quantum yield of photosystem II and the integrity of cell membranes relative to the elemental content of the epilithic desert lichen Ramalina maciformisENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2002Jacob Garty Abstract The present study used the epilithic fruticose lichen Ramalina maciformis to investigate the occurrence of mineral elements, including heavy metals, at a distance of up to 50 km from the industrial region in Ramat Hovav in the Negev Desert, Israel. The major objective of this study was an analytical comparison of elemental content and physiological parameters of lichen vitality, apart from a test of the applicability of this specific lichen in investigations of air pollution. The Ca, Cr, Cu, K, Mg, Na, Pb, S, Sr, and Zn content of thalli from the unpolluted Tellalim site collected in August 1997, transferred to 24 biomonitoring sites, and retrieved in April 1998 was analyzed in comparison with the following parameters: The potential quantum yield of photosystem II (PSII), and the integrity of cell membranes. Transplanted thalli in several sites at Ramat Hovav accumulated large amounts of most of the elements. The K content of the transplants located in the polluted sites indicated a leakage of this element, because this content was lower than that of thalli in unpolluted sites. Calcium, Cu, Mn, and Na showed an inverse correlation with the K content of the lichen. Calcium, Cu, and Sr showed an inverse correlation with the Fv/Fm ratio expressing the potential quantum yield of PSII. Calcium, Cr, Cu, Mg, Na, S, and Sr showed a positive correlation with the electrical conductivity corresponding with cell-membrane disintegration. The present study demonstrated a meaningful connection between enlarged concentrations of certain elements and physiological phenomena. The capability of the lichen to detect air pollution was found to be satisfactory. The dispersion of airborne heavy metals was found, however, to be local and limited to a few hundred meters from the source of pollution. [source] Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesisFEBS JOURNAL, Issue 21 2007Anna Hennig Bacterial lipoproteins play crucial roles in host,pathogen interactions and pathogenesis and are important targets for the immune system. A prominent example is the outer surface protein A (OspA) of Borrelia burgdorferi, which has been efficiently used as a vaccine for the prevention of Lyme disease. In a previous study, OspA could be produced in tobacco chloroplasts in a lipidated and immunogenic form. To further explore the potential of chloroplasts for the production of bacterial lipoproteins, the role of the N-terminal leader sequence was investigated. The amount of recombinant OspA could be increased up to ten-fold by the variation of the insertion site in the chloroplast genome. Analysis of OspA mutants revealed that replacement of the invariant cysteine residue as well as deletion of the leader sequence abolishes palmitolyation of OspA. Also, decoration of OspA with an N-terminal eukaryotic lipidation motif does not lead to palmitoylation in chloroplasts. Strikingly, the bacterial signal peptide of OspA efficiently targets the protein to thylakoids, and causes a mutant phenotype. Plants accumulating OspA at 10% total soluble protein could not grow without exogenously supplied sugars and rapidly died after transfer to soil under greenhouse conditions. The plants were found to be strongly affected in photosystem II, as revealed by the analyses of temporal and spatial dynamics of photosynthetic activity by chlorophyll fluorescence imaging. Thus, overexpression of OspA in chloroplasts is limited by its concentration-dependent interference with essential functions of chloroplastic membranes required for primary metabolism. [source] Functional dissection of two Arabidopsis PsbO proteinsFEBS JOURNAL, Issue 9 2005PsbO PsbO protein is an extrinsic subunit of photosystem II (PSII) and has been proposed to play a central role in stabilization of the catalytic manganese cluster. Arabidopsis thaliana has two psbO genes that express two PsbO proteins; PsbO1 and PsbO2. We reported previously that a mutant plant that lacked PsbO1 (psbo1) showed considerable growth retardation despite the presence of PsbO2 [Murakami, R., Ifuku, K., Takabayashi, A., Shikanai, T., Endo, T., and Sato, F. (2002) FEBS Lett523, 138,142]. In the present study, we characterized the functional differences between PsbO1 and PsbO2. We found that PsbO1 is the major isoform in the wild-type, and the amount of PsbO2 in psbo1 was significantly less than the total amount of PsbO in the wild-type. The amount of PsbO as well as the efficiency of PSII in psbo1 increased as the plants grew; howeVER, it neVER reached the total PsbO level observed in the wild-type, suggesting that the poor activity of PSII in psbo1 was caused by a shortage of PsbO. In addition, an in vitro reconstitution experiment using recombinant PsbOs and urea-washed PSII particles showed that oxygen evolution was better recoVERed by PsbO1 than by PsbO2. Further analysis using chimeric and mutated PsbOs suggested that the amino acid changes Val186,Ser, Leu246,Ile, and Val204,Ile could explain the functional difference between the two PsbOs. Therefore we concluded that both the lower expression level and the inferior functionality of PsbO2 are responsible for the phenotype observed in psbo1. [source] Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem IIFEBS JOURNAL, Issue 5 2004Akihiko Tohri To elucidate the domains on the extrinsic 23 kDa protein involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II, we modified amino or carboxyl groups of the 23 kDa protein to uncharged methyl ester groups with N -succinimidyl propionate or glycine methyl ester in the presence of a water-soluble carbodiimide, respectively. The N -succinimidyl propionate-modified 23 kDa protein did not bind to the 33 kDa protein associated with PSII membranes, whereas the glycine methyl ester-modified 23 kDa protein completely bound. This indicates that positive charges on the 23 kDa protein are important for electrostatic interaction with the 33 kDa protein associated with the PSII membranes. Mapping of the N -succinimidyl propionate-modified sites of the 23 kDa protein was performed using Staphylococcus V8 protease digestion of the modified protein followed by determination of the mass of the resultant peptide fragments with MALDI-TOF MS. The results showed that six domains (Lys11,Lys14, Lys27,Lys38, Lys40, Lys90,Lys96, Lys143,Lys152, Lys166,Lys174) were modified with N -succinimidyl propionate. In these domains, Lys11, Lys13, Lys33, Lys38, Lys143, Lys166, Lys170 and Lys174 were wholly conserved in the 23 kDa protein from 12 species of higher plants. These positively charged lysyl residues on the 23 kDa protein may be involved in electrostatic interactions with the negatively charged carboxyl groups on the 33 kDa protein, the latter has been suggested to be important for the 23 kDa binding [Bricker, T.M. & Frankel, L.K. (2003) Biochemistry42, 2056,2061]. [source] Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29FEBS JOURNAL, Issue 2 2001Effects of zeaxanthin, phosphorylation Nonradiative dissipation of excitation energy is the major photoprotective mechanism in plants. The formation of zeaxanthin in the antenna of photosystem II has been shown to correlate with the onset of nonphotochemical quenching in vivo. We have used recombinant CP29 protein, over-expressed in Escherichia coli and refolded in vitro with purified pigments, to obtain a protein indistinguishable from the native complex extracted from thylakoids, binding either violaxanthin or zeaxanthin together with lutein. These recombinant proteins and the native CP29 were used to measure steady-state chlorophyll fluorescence emission and fluorescence decay kinetics. We found that the presence of zeaxanthin bound to CP29 induces a ,,35% decrease in fluorescence yield with respect to the control proteins (the native and zeaxanthin-free reconstituted proteins). Fluorescence decay kinetics showed that four components are always present but lifetimes (,) as well as relative fluorescence quantum yields (rfqy) of the two long-lived components (,3 and ,4) are modified by the presence of zeaxanthin. The most relevant changes are observed in the rfqy of ,3 and in the average lifetime (, 2.4 ns with zeaxanthin and 3.2,3.4 ns in the control proteins). When studied in vitro, no significant effect of acidic pH (5.2,5.3) is observed on chlorophyll a fluorescence yield or kinetics. The data presented show that recombinant CP29 is able to bind zeaxanthin and this protein-bound zeaxanthin induces a significant quenching effect. [source] Insertion of light-harvesting chlorophyll a/b protein into the thylakoidFEBS JOURNAL, Issue 4 2000Topographical studies The major light-harvesting chlorophyll a/b -binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+ -complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid. [source] Structural analysis of photosystem II in far-red-light-adapted thylakoid membranesFEBS JOURNAL, Issue 1 2000New crystal forms provide evidence for a dynamic reorganization of light-harvesting antennae subunits We studied two-dimensional crystals of the major pigment,protein complex, photosystem II, in far-red-light-adapted thylakoid membranes of the viridis-zb63 mutant of barley. Significantly larger grana membranes were produced with an increased synthesis of the entire photosystem II complex. These red-light-adapted membranes also contained two-dimensional crystals with a high frequency. Three different crystal forms of photosystem II were observed, providing the following data which further our understanding of the architecture of the native complex. (a) The oligomeric form of photosystem II in the membrane was monomeric in all crystal forms, but with a clear non-crystallographic pseudo-twofold symmetry. This was more apparent on the lumenal face of the complex. (b) The variability of unit cell contacts in different crystal forms implied that the peripheral light-harvesting antenna complex and the core of the complex were loosely connected. These peripheral subunits were predicted to rearrange so that they can either encircle the core complex or associate in parallel channels separated by lines of core complexes. (c) Grana membranes were found to retain a double-layered inside-out character, with a stromal face-to-stromal face packing. However, the presence of a crystal in one membrane did not necessarily impose crystallinity on its pair. [source] Chlorophyll fluorescence, predawn water potential and photosynthesis in precipitation pulse-driven ecosystems , implications for ecological studiesFUNCTIONAL ECOLOGY, Issue 3 2008V. Resco Summary 1A major research focus in population and community ecology is to establish a mechanistic understanding of plant interactions and demographic responses. The first step towards this mechanistic approach relies on understanding the differences in stress caused by different environmental conditions. Leaf-level photosynthetic rate (A) within and among plant populations provides important insight into population and community processes, but is difficult to acquire with sufficient replication under field conditions. Instead, chlorophyll fluorescence (Fv/Fm) and predawn water potential (,pd) are often used in arid and semi-arid ecosystems. 2Fv/Fm reflects the photoactivation status of photosystem II (PSII), whereas ,pd indicates water availability in the rhizosphere. Here we compare these indices with A in two perennial C4 grasses (native Heteropogon contortus and invasive Eragrostis lehmanniana) and in seedlings of the C3 shrub Prosopis velutina growing on highly contrasting sandy loam and loamy clay soils in experimental plots. Measurements were made the day prior to and up to 7 days following a 39-mm rainfall pulse after 2 months of drought. 3A was more sensitive across a broad range of environmental conditions, whereas Fv/Fm and ,pd only responded to periods of protracted drought. The use of these measures was further complicated because their values varied daily and we observed different time-lags in their response to precipitation pulses. 4We suggest sampling schemes and a priori measurements to capture the value that is representative for the question of interest, and that match the pulsed biological activity in these ecosystems. Finally, we suggest the use of these measures in combination with measurements providing integration over longer time periods, such as ,13C, ,18O and N concentration in bulk leaf tissue. [source] The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant allelesGENES TO CELLS, Issue 8 2002Wataru Sakamoto Background: A leaf-variegated mutation var1 of Arabidopsis results in the development of abnormal plastids and the formation of a green/white sector. Genetic analysis of the var1 mutant indicated that it acts synergistically with another mutation var2, suggesting that the two genes are relevant. The VAR2 locus has been shown to encode a chloroplastic FtsH, an ATP-dependent protease which is possibly involved in the degradation of thylakoid proteins and plastid development. Results: In this study we show that the VAR1 locus encodes a chloroplastic FtsH protein homologous to VAR2. VAR1 contains a conserved motif for ATPase and a metalloprotease characteristic to FtsH proteins, and is targeted into chloroplasts. A VAR1-fusion protein synthesized in vitro exhibited ATPase activity and partial metalloprotease activity. The maximum yield of photochemistry, measured by chlorophyll fluorescence, showed that the var1 mutants were sensitive to photoinhibitory light exposure at 800 µmol/m2/s. Conclusion:VAR1 and VAR2 comprise an FtsH small gene family together with other FtsH genes in Arabidopsis. VAR1 as well as VAR2 may play an important role in degrading photodamaged subunits in photosystem II. Loss of VAR1 and VAR2 perhaps impairs the photoprotection mechanism and thylakoid development, causing leaf variegation as a consequence. [source] Energy Dissipation and Photoinhibition in Douglas-Fir Needles with a Fungal-Mediated Reduction in Photosynthetic RatesJOURNAL OF PHYTOPATHOLOGY, Issue 11-12 2002Daniel K. Manter Abstract The dissipation of absorbed light and potential for photooxidative damage was explored in Douglas-fir (Pseudotsuga menziesii ) seedlings with and without Phaeocryptopus gaeumannii infection. The presence of P. gaeumannii significantly reduced net CO2 assimilation rates from ca. 6 ,mol/m2/s to 1.5 ,mol/m2/s, without any significant impact on chloroplast pigments. The partitioning of absorbed light-energy to photochemistry or thermal dissipation was determined from chlorophyll fluorescence measurements. Maximum thermal dissipation for both control and infected needles was ca. 80%, consistent with the similar xanthophyll pool sizes in the two treatments. At high photosynthetic photon flux density (PPFD), when thermal dissipation was maximized, the lower photochemical utilization in infected needles resulted in greater amounts of excess absorbed light (ca. 20 and 10% for the infected and control needles, respectively). A second experiment, monitoring changes in photosystem II (PSII) efficiency (Fv/Fm) in response to a 1 h high light treatment (PPFD=2000 ,mol/m2/s) also suggests that infected needles absorb greater amounts of excess light. In this experiment, declines in Fv/Fm were 1.5 times greater in infected needles, despite the similar xanthophyll pool sizes. Furthermore, increases in minimum fluorescence (178 and 122% of initial values for the infected and control needles, respectively) suggest that the reduction in PSII efficiency is largely attributable to photooxidative damage. Finally, reductions in PSII efficiency under high light conditions provide a plausible explanation for the greater pathogenicity (e.g. premature needle abscission) of P. gaeumannii in sun-exposed foliage. [source] A thermoluminescence study of the effects of nitrite on photosystem II in spinach thylakoidsLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 3 2006Archna Sahay Abstract The site of action of nitrite on PS II was investigated by measuring the TL profile of nitrite-treated spinach thylakoid membranes. Three bands were observed in control, which were identified as the Q band (7°C), the B band (24°C) and the C band (57°C). In the presence of 20 mmol/L nitrite, the intensity of the Q band decreased, the B band upshifted to 46°C but the C band disappeared. The suppression of the Q band and the upshift of the B band suggested that nitrite caused inhibition at the water oxidizing complex. The effects of nitrite also remained the same in the presence of chloride. In case of ion-sufficient thylakoid membranes, nitrite decreased the Q band peak intensity and caused an upshift in the B band peak temperature. Nitrite showed similar effects in the presence of DCMU. This suggested that the site of action of nitrite is not at the acceptor side but at the donor side of PS II. The inhibition shown by nitrite has been found to be specific for nitrite anion. No other anions such as formate, fluoride or nitrate, were effective. Copyright © 2006 John Wiley & Sons, Ltd. [source] Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in ArabidopsisNEW PHYTOLOGIST, Issue 1 2010Luis A. J. Mur Summary ,The staygreen (SGR) gene encodes a chloroplast-targeted protein which promotes chlorophyll degradation via disruption of light-harvesting complexes (LHCs). ,Over-expression of SGR in Arabidopsis (SGR-OX) in a Columbia-0 (Col-0) background caused spontaneous necrotic flecking. To relate this to the hypersensitive response (HR), Col-0, SGR-OX and RNAi SGR (SGRi) lines were challenged with Pseudomonas syringae pv tomato (Pst) encoding the avirulence gene avrRpm1. Increased and decreased SGR expression, respectively, accelerated and suppressed the kinetics of HR-cell death. In Col-0, SGR transcript increased at 6 h after inoculation (hai) when tissue electrolyte leakage indicated the initiation of cell death. ,Excitation of the chlorophyll catabolite pheophorbide (Pheide) leads to the formation of toxic singlet oxygen (1O2). Pheide was first detected at 6 hai with Pst avrRpm1 and was linked to 1O2 generation and correlated with reduced Pheide a oxygenase (PaO) protein concentrations. The maximum quantum efficiency of photosystem II (Fv/Fm), quantum yield of electron transfer at photosystem II (,PSII), and photochemical quenching (qP) decreased at 6 hai in Col-0 but not in SGRi. Disruption of photosynthetic electron flow will cause light-dependent H2O2 generation at 6 hai. ,We conclude that disruption of LHCs, possibly influenced by SGR, and absence of PaO produce phototoxic chlorophyll catabolites and oxidative stress leading to the HR. [source] OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: implication for a highly conserved plant cGTPase essential for chloroplast functionNEW PHYTOLOGIST, Issue 1 2010Hongjia Liu Summary ,The bacterial protein YqeH is a circularly permuted GTPase with homologs encoded by plant nuclear genomes. The rice homolog OsNOA1/RIF1 is encoded by the single-copy gene Os02g01440. OsNOA1/RIF1 is expressed in different tissues and is light-inducible. The OsNOA1/RIF1-EYFP fusion protein was targeted to chloroplasts in transgenic Arabidopsis plants. In addition, the rice homolog was able to rescue most of the growth phenotypes in an Arabidopsis rif1 mutant. ,Rice (Oryza sativa) OsNOA1/RIF1 RNAi mutant seedlings were chlorotic with reduced pigment contents and lower photosystem II (PSII) efficiency. However, the expressions of the chloroplast-encoded genes rbcL, atpB, psaA and psbA were not affected. By contrast, reduced abundance of the chloroplast 16S rRNA was observed in the mutant. ,Quantitative iTRAQ-LC-MS/MS proteomics investigations revealed proteome changes in the rice mutant consistent with the expected functional role of OsNOA1/RIF1 in chloroplast translation. The RNAi mutant showed significantly decreased expression levels of chloroplast-encoded proteins as well as nuclear-encoded components of chloroplast enzyme complexes. Conversely, upregulation of some classes of nonchloroplastic proteins, such as glycolytic and phenylpropanoid pathway enzymes, was detected. ,Our work provides independent indications that a highly conserved nuclear-encoded cGTPase of likely prokaryotic origin is essential for proper chloroplast ribosome assembly and/or translation in plants. [source] Plastid signals that affect photomorphogenesis in Arabidopsis thaliana are dependent on GENOMES UNCOUPLED 1 and cryptochrome 1NEW PHYTOLOGIST, Issue 2 2009Michael E. Ruckle Summary ,,When plastids experience dysfunction they emit signals that help coordinate nuclear gene expression with their functional state. One of these signals can remodel a light-signaling network that regulates the expression of nuclear genes that encode particular antenna proteins of photosystem II. These findings led us to test whether plastid signals might impact other light-regulated processes. ,,Photomorphogenesis was monitored in genomes uncoupled 1 (gun1), cryptochrome 1 (cry1), and long hypocotyl 5 (hy5), which have defects in light and plastid signaling, by growing Arabidopsis thaliana seedlings under various light conditions and either treating or not treating them with antibiotics that induce chloroplast dysfunction and trigger plastid signaling. ,,It was found that plastid signals that depend on GUN1 can affect cotyledon opening and expansion, anthocyanin biosynthesis, and hypocotyl elongation. We also found that plastid signals that depend on CRY1 can regulate cotyledon expansion and development. ,,Our findings suggest that plastid signals triggered by plastid dysfunction can broadly affect photomorphogenesis and that plastid and light signaling can promote or antagonize each other, depending on the responses studied. These data suggest that GUN1 and cry 1 help to integrate chloroplast function with photomorphogenesis. [source] Winter down-regulation of intrinsic photosynthetic capacity coupled with up-regulation of Elip-like proteins and persistent energy dissipation in a subalpine forestNEW PHYTOLOGIST, Issue 2 2006C. Ryan Zarter Summary ,,Overwintering, sun-exposed and photosynthetically inactive evergreens require powerful photoprotection. The goal of this study was to seasonally characterize photosynthesis and key proteins/components involved in electron transport and photoprotection. ,,Maximal photosystem II (PSII) efficiency and photosynthetic capacity, amounts of zeaxanthin (Z), antheraxanthin (A), pheophytin and proteins (oxygen-evolving 33 kDa protein (OEC), PSII core protein D1 and subunit S (PsbS) protein, and members of the early light-inducible protein (Elip) family) were assessed in five conifer species at high altitude and in ponderosa pine (Pinus ponderosa) at moderate altitude during summer and winter. ,,Relative to summer, winter down-regulation of photosynthetic capacity and loss of PSII efficiency at the high-altitude sites were paralleled by decreases in OEC, D1, and pheophytin; massive nocturnal retention of (Z + A) and up-regulation of two to four proteins cross-reactive with anti-Elip antibodies; and no change in PsbS amount. By contrast, ponderosa pine at moderate altitude exhibited no down-regulation of photosynthetic capacity, smaller depressions in PSII efficiency, and less up-regulation of Elip family members. ,,These results support a function for members of the Elip family in the acclimation of sun-exposed needles that down-regulate photosynthesis during winter. A possible role in sustained photoprotection is considered. [source] psbA mutation (Asn266 to Thr) in Senecio vulgaris L. confers resistance to several PS II-inhibiting herbicidesPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 9 2006Kee Woong Park Abstract DNA sequence analysis of the psbA gene encoding the D1 protein of photosystem II (PS II), the target site of PS II-inhibiting herbicides, identified a point mutation (Asn266 to Thr) in a bromoxynil-resistant Senecio vulgaris L. population collected from peppermint fields in Oregon. Although this mutation has been previously reported in Synechocystis, this is the first report of this particular point mutation in a higher plant exhibiting resistance to PS II-inhibiting herbicides. The resistant population displayed high-level resistance to bromoxynil and terbacil (R/S ratio 10.1 and 9.3, respectively) and low-level resistance to metribuzin and hexazinone (R/S ratio 4.2 and 2.6, respectively) when compared with the susceptible population. However, the population was not resistant to the triazine herbicides atrazine and simazine or to the urea herbicide diuron. A chlorophyll fluorescence assay confirmed the resistance levels and patterns of cross-resistance of the whole-plant studies. The resistant S. vulgaris plants produced fewer seeds. Differences in cross-resistance patterns to PS II-inhibiting herbicides and the difference in fitness cost could be exploited in a weed management program. Copyright © 2006 Society of Chemical Industry [source] Herbicidal action of 2-hydroxy-3-alkyl-1,4-naphthoquinonesPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 3 2002Philip J Jewess Abstract The main mode of herbicidal activity of 2-hydroxy-3-alkyl-1,4-naphthoquinones is shown to be inhibition of photosystem II (PSII). The herbicidal and in vitro activities have been measured and correlated with their (Log)octanol/water partition coefficients (Log Ko/w). The length of the 3- n -alkyl substituent for optimal activity differed between herbicidal and in vitro activity. The maximum in vitro activity was given by the nonyl to dodecyl homologues (Log Ko/w between 6.54 and 8.12), whereas herbicidal activity peaked with the n -hexyl compound (Log Ko/w,=,4.95). The effect of chain branching was also investigated using isomeric pentyl analogues substituted at position 3. All exhibited similar levels of in vitro activities but herbicidal activities differed, albeit moderately, with the exception of one analogue that was much less phytotoxic. Other modes of action were also investigated using two representative compounds. They did not show any activity on photosystem I or mitochondrial complex I, or generate toxic oxygen radicals by redox cycling reactions. Only moderate activity was found against mitochondrial complex III from plants, in contrast to much higher corresponding activity using an insect enzyme. © 2002 Society of Chemical Industry [source] Comparison by PAM Fluorometry of Photosynthetic Activity of Nine Marine Phytoplankton Grown Under Identical Conditions,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2005P. Juneau ABSTRACT The photosynthetic activity of marine phytoplankton from five algal classes (Phaeodactylum tricornutum, Skeletonema costatum, Thalassiosira oceanica, Thalassiosira weissflogii, Dunaliella tertiolecta, Mantoniella squamata, Emiliania huxleyi, Pavlova lutheri and Heterosigma akashiwo) was investigated under identical growth conditions to determine interspecies differences. Primary photochemistry and electron transport capacity of individual species were examined by pulse amplitude-modulated (PAM) fluorescence. Although few differences were found in maximal photosystem II (PSII) photochemical efficiency between various species, large differences were noticed in their PSII-photosystem I (PSI) electron transport activity. We found that species such as T. oceanica and M. squamata have much lower photochemical activity than H. akashiwo. It appeared that processes involved in electron transport activity were more susceptible to change during algal evolution compared with the primary photochemical act close to PSII. Large variations in the nonphotochemical energy dissipation event among species were also observed. Light energy required to saturate photosynthesis was very different between species. We have shown that M. squamata and H. akashiwo required higher light energy (>1300 ,mol m,2 s,1) to saturate photosynthesis compared with S. costatum and E. huxleyi (ca 280 ,mol m,2 s,1). These differences were interpreted to be the result of variations in the size of lightharvesting complexes associated with PSII. These disparities in photosynthetic activity might modulate algal community structure in the natural environment where light energy is highly variable. Our results suggest that for an accurate evaluation of primary productivity from fluorescence measurements, it is essential to know the species composition of the algal community and the individual photosynthetic capacity related to the major phytoplankton species present in the natural phytoplankton assemblage. [source] CP43,, the isiA Gene Product, Functions as an Excitation Energy Dissipator in the Cyanobacterium Synechococcus sp.PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2001PCC 794 ABSTRACT Under conditions of iron deficiency certain cyanobacteria induce a chlorophyll (Chl)-binding protein, CP43,, which is encoded by the isiA gene. We have previously suggested that CP43, functions as a nonradiative dissipator of light energy. To further substantiate its functional role an isiA overexpression construct was introduced into the genome of a cyanobacterium Synechococcus sp. PCC 7942 (giving isiAoe cells). The presence of functional CP43, in isiAoe cells was confirmed by Western blot as well as by the presence of a characteristic blueshift of the red Chl a absorption peak and a notable increase in the 77 K fluorescence peak at 685 nm. Compared to wild-type cells isiAoe cells, with induced CP43,, had both smaller functional antenna size and decreased yields of room temperature Chl fluorescence at various light irradiances. These observations strongly suggest that isiAoe cells, with induced CP43,, have an increased capacity for dissipating light energy as heat. In agreement with this hypothesis isiAoe cells were also more resistant to photoinhibition of photosynthesis than wild-type cells. Based on these results we have further strengthened the hypothesis that CP43, functions as a nonradiative dissipator of light energy, thus protecting photosystem II from excessive excitation under iron-deficient conditions. [source] The Effect of Decreasing Temperature up to Chilling Values on the in vivo F685/F735 Chlorophyll Fluorescence Ratio in Phaseolus vulgaris and Pisum sativum: The Role of the Photosystem I Contribution to the 735 nm Fluorescence Band ,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2000Giovanni Agati ABSTRACT The effect of leaf temperature (T), between 23 and 4°C, on the chlorophyll (Chl) fluorescence spectral shape was investigated under moderate (200 ,E m,2 s,1) and low (30,35 ,E m,2 s,1) light intensities in Phaseolus vulgaris and Pisum sativum. With decreasing temperature, an increase in the fluorescence yield at both 685 and 735 nm was observed. A marked change occurred at the longer emission band resulting in a decrease in the Chl fluorescence ratio, F685/F735, with reducing T. Our fluorescence analysis suggests that this effect is due to a temperature-induced state 1,state 2 transition that decreases and increases photosystem II (PSII) and photosystem I (PSI) fluorescence, respectively. Time-resolved fluorescence lifetime measurements support this interpretation. At a critical temperature (about 6°C) and low light intensity a sudden decrease in fluorescence intensity was observed, with a larger effect at 685 than at 735 nm. This is probably linked to a modification of the thylakoid membranes, induced by chilling temperatures, which can alter the spillover from PSII to PSI. The contribution of photosystem I to the long-wavelength Chl fluorescence band (735 nm) at room temperature was estimated by both time-resolved fluorescence lifetime and fluorescence yield measurements at 685 and 735 nm. We found that PSI contributes to the 735 nm fluorescence for about 40, 10 and 35% at the minimal (F0), maximal (Fm) and steady-state (Fs) levels, respectively. Therefore, PSI must be taken into account in the analysis of Chl fluorescence parameters that include the 735 nm band and to interpret the changes in the Chl fluorescence ratio that can be induced by different agents. [source] Daily dynamics of photosynthesis of the freshwater red alga Sirodotia delicatula (Batrachospermales, Rhodophyta)PHYCOLOGICAL RESEARCH, Issue 4 2009Thiago Kusakariba SUMMARY The daily course of photosynthetic parameters of a population of the freshwater red alga Sirodotia delicatula from Sćo Paulo State, Brazil (20°43,24,S, 49°18,21,W) was investigated under natural and laboratory conditions using dissolved oxygen and in vivo chlorophyll fluorescence techniques. Field specimens in laboratory conditions showed a defined daily pattern for net photosynthesis (NP) with two peaks observed in marine macroalgae and some freshwater red algae: the first (the highest) during the morning, and the second (the lowest and less evident) during the afternoon. Values of electron transport rate did not show a clear pattern of daily variation. NP results suggest the existence of an endogenous rhythm controlling photosynthesis. The study under natural conditions in two contrasting periods (autumn (June) and spring (October)) showed that the daily course of effective and potential quantum yield values was negatively correlated with irradiance and values were similar in the beginning and end of the day. These data evidenced, respectively, high excitement pressure on photosystem II and good recovery capacity (with lower values in spring) and a lack of irreversible photodamage to photosynthetic apparatus due to the prolonged exposure to high irradiances. Non-photochemical quenching values were also negatively correlated with the irradiance, suggesting a low dissipation capacity of excess energy absorbed by reaction centers. The results evidenced a typical pattern of daily variation with evident response to irradiance. [source] |