Photosynthetic Capacity (photosynthetic + capacity)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Photosynthesis within isobilateral Eucalyptus pauciflora leaves

NEW PHYTOLOGIST, Issue 4 2006
John R. Evans
Summary ,,Adult Eucalyptus pauciflora leaves are vertically displayed. They have multiple palisade cell layers beneath both surfaces, interrupted by numerous oil glands. Here, we characterized light absorption, chlorophyll, photosynthetic capacity and CO2 fixation profiles through these leaves. ,,Multiple chlorophyll fluorescence images of leaves viewed in cross-section were made by applying light from different directions. 14CO2 labelling, followed by paradermal cryosectioning, was used to measure profiles of photosynthesis. ,,Photosynthetic capacity peaked 75 µm into the mesophyll beneath each surface and was lowest in the centre of the 600-µm-thick leaf. Predictions by a multilayer model using Beer's law matched the observed profiles of 14C fixation. When constrained to the horizontal, a vertically acclimated leaf gains only 79% of the daily photosynthesis achieved by a horizontally acclimated leaf. However, it outperforms the horizontally acclimated leaf when both are oriented vertically. ,,Each half of the observed profile of photosynthetic capacity closely matches the profile of light absorption through the leaf with unilateral illumination to that surface. Derivation of biochemical parameters from gas exchange measured under unilateral illumination would underestimate the real photosynthetic capacity of these leaves by 21%. [source]


UV-B radiation constrains the photosynthesis of Quercus robur through impacts on the abundance of Microsphaera alphitoides

FOREST PATHOLOGY, Issue 5 2000
By K. K. Newsham
Summary Quercus robur saplings were exposed at an outdoor facility in the UK to supplemental levels of UV-B radiation (280,315 nm) under arrays of cellulose diacetate-filtered fluorescent lamps which also produced UV-A radiation (315,400 nm). Saplings were also exposed to supplemental UV-A radiation under arrays of polyester-filtered lamps and to ambient levels of solar radiation under arrays of unenergized lamps. The UV-B treatment was modulated to maintain a 30% elevation above the ambient level of erythemally weighted UV-B radiation. Naturally occurring infections by oak powdery mildew (Microsphaera alphitoides) were more abundant, and developed more rapidly, on lammas leaves of saplings which were exposed to treatment levels of UV-B radiation than on leaves of saplings exposed to supplemental UV-A or to ambient levels of solar radiation over 12 weeks in summer and autumn 1996. An analysis of leaf photosynthetic capacities revealed that M. alphitoides infection reduced the quantum efficiency of photosystem (PS) II by 14% at moderate irradiance. Although there was no direct effect of UV-B radiation on PSII photochemistry, exposure of saplings to supplemental UV-A radiation under polyester-filtered lamps resulted in a 17.5% decrease in PSII quantum efficiency, compared with saplings exposed to ambient solar radiation. The results from our study suggest that photosynthesis of Q. robur may be constrained by exposure to UV-B radiation in the natural environment through impacts on the abundance of M. alphitoides. [source]


RELATING PHYTOPLANKTON DYNAMICS AND PRODUCTION TO SEDIMENT RESUSPENSION IN SOUTHERN LAKE MICHIGAN

JOURNAL OF PHYCOLOGY, Issue 2001
Article first published online: 24 SEP 200
Millie, D. F.1, Fahnenstiel, G. L.2, Carrick, H. J.3, Lohrenz, S. E.4, & Schofield, O. M. E.5 1USDA-Agricultural Research Service, Sarasota, FL 34236, USA, 2NOAA-Lake Michigan Field Station, Muskegon, MI 49441, USA, 3Institute of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA, 4Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14060, USA; 5Isttitute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick NJ 08901 USA, Sediment resuspension is an annually recurrent feature during spring holomixis in southern Lake Michigan. Relationships between resuspension events and phyt-oplankton biomass, compositional dynamics, and pro-duction were evaluated during 1998 and 1999. Increased water-column light attenuation (KPAR) and suspended particulate matter (SPM) concentrations corresponded with resuspension events within nearshore regions. However, neither KPAR nor SPM corresponded with chlorophyll (Chl) a concentrations, indicating no impact of resuspension on instantaneous biomass accumulation. Diatoms and cryptophytes dominated phytoplankton assemblages and together typically comprised greater than 85% of the Chl a. The associations of SPM/KPAR with diatom Chl a, and the inverse relationship between relative diatom and crypto-phyte Chl a corresponded with the dominance of diatoms and cryptophytes in near- and offshore waters, respectively. Moreover, a spatial variation in species composition occurred during resuspension events; small, centric diatoms exhibiting meroplanktonic life histories and large, pennate diatoms considered benthic in origin were associated with sediment resuspension whereas large, net diatoms and cryptophytes typically comprising phytoplankton of the annual spring bloom and of optically-clear, offshore waters were not. The presence of viable diatom photopigments and the abundance of small centric diatoms within the surficial sediments, established this layer as the source of meroplankton. Integral production was dramatically reduced within sediment-impacted waters; however, nearshore assemblages appeared to have greater photosynthetic capacities than offshore assemblages. Although resuspension dramatically influenced near-shore phytoplankton assemblages, it appeared to have little, if any relationship with the compositional development of the annual spring bloom. [source]


A test of the generality of leaf trait relationships on the Tibetan Plateau

NEW PHYTOLOGIST, Issue 4 2006
Jin-Sheng He
Summary ,,Leaf mass per area (LMA), nitrogen concentration (on mass and area bases, Nmass and Narea, respectively), photosynthetic capacity (Amass and Aarea) and photosynthetic nitrogen use efficiency (PNUE) are key foliar traits, but few data are available from cold, high-altitude environments. ,,Here, we systematically measured these leaf traits in 74 species at 49 research sites on the Tibetan Plateau to examine how these traits, measured near the extremes of plant tolerance, compare with global patterns. ,,Overall, Tibetan species had higher leaf nitrogen concentrations and photosynthetic capacities compared with a global dataset, but they had a slightly lower Amass at a given Nmass. These leaf trait relationships were consistent with those reported from the global dataset, with slopes of the standardized major axes Amass,LMA, Nmass,LMA and Amass,Nmass identical to those from the global dataset. Climate only weakly modulated leaf traits. ,,Our data indicate that covarying sets of leaf traits are consistent across environments and biogeographic regions. Our results demonstrate functional convergence of leaf trait relationships in an extreme environment. [source]


Photosynthetic Acclimation to Simultaneous and Interacting Environmental Stresses Along Natural Light Gradients: Optimality and Constraints

PLANT BIOLOGY, Issue 3 2004
ü. Niinemets
Abstract: There is a strong natural light gradient from the top to the bottom in plant canopies and along gap-understorey continua. Leaf structure and photosynthetic capacities change close to proportionally along these gradients, leading to maximisation of whole canopy photosynthesis. However, other environmental factors also vary within the light gradients in a correlative manner. Specifically, the leaves exposed to higher irradiance suffer from more severe heat, water, and photoinhibition stresses. Research in tree canopies and across gap-understorey gradients demonstrates that plants have a large potential to acclimate to interacting environmental limitations. The optimum temperature for photosynthetic electron transport increases with increasing growth irradiance in the canopy, improving the resistance of photosynthetic apparatus to heat stress. Stomatal constraints on photosynthesis are also larger at higher irradiance because the leaves at greater evaporative demands regulate water use more efficiently. Furthermore, upper canopy leaves are more rigid and have lower leaf osmotic potentials to improve water extraction from drying soil. The current review highlights that such an array of complex interactions significantly modifies the potential and realized whole canopy photosynthetic productivity, but also that the interactive effects cannot be simply predicted as composites of additive partial environmental stresses. We hypothesize that plant photosynthetic capacities deviate from the theoretical optimum values because of the interacting stresses in plant canopies and evolutionary trade-offs between leaf- and canopy-level plastic adjustments in light capture and use. [source]


Trophic control of grassland production and biomass by pathogens

ECOLOGY LETTERS, Issue 2 2003
Charles E. Mitchell
Abstract Current theories of trophic regulation of ecosystem net primary production and plant biomass incorporate herbivores, but not plant pathogens. Obstacles to the incorporation of pathogens include a lack of data on pathogen effects on primary production, especially outside agricultural and forest ecosystems, and an apparent inability to quantify pathogen biomass. Here, I report the results of an experiment factorially excluding foliar fungal pathogens and insect herbivores from an intact grassland ecosystem. At peak in control plots, 8.9% of community leaf area was infected by pathogens. Disease reduction treatment dramatically increased root production and biomass by increasing leaf longevity and photosynthetic capacity. In contrast, herbivory reduction had no detectable effects at the ecosystem or leaf scale. Additionally, biomass of foliar fungal pathogens in the ecosystem was comparable with that of insect herbivores. These results identify pathogens as potential regulators of ecosystem processes and promote the incorporation of pathogens into trophic theory. [source]


Ecosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lake

FRESHWATER BIOLOGY, Issue 8 2003
T. Larmola
Summary 1In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998,1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass. 2In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8,6.2 mol m,2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above-ground plant biomass, had a net CO2 loss of 1.1,7.1 mol m,2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment. 3Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes. [source]


Forced depression of leaf hydraulic conductance in situ: effects on the leaf gas exchange of forest trees

FUNCTIONAL ECOLOGY, Issue 4 2007
T. J. BRODRIBB
Summary 1Recent work on the hydraulic conductance of leaves suggests that maximum photosynthetic performance of a leaf is defined largely by its plumbing. Pursuing this idea, we tested how the diurnal course of gas exchange of trees in a dry tropical forest was affected by artificially depressing the hydraulic conductance of leaves (Kleaf). 2Individual leaves from four tropical tree species were exposed to a brief episode of forced evaporation by blowing warm air over leaves in situ. Despite humid soil and atmospheric conditions, this caused leaf water potential (,leaf) to fall sufficiently to induce a 50,74% drop in Kleaf. 3Two of the species sampled proved highly sensitive to artificially depressed Kleaf, leading to a marked and sustained decline in the instantaneous rate of CO2 uptake, stomatal conductance and transpiration. Leaves of these species showed a depression of hydraulic and photosynthetic capacity in response to the ,blow-dry' treatment similar to that observed when major veins in the leaf were severed. 4By contrast, the other two species sampled were relatively insensitive to Kleaf manipulation; photosynthetic rates were indistinguishable from control (untreated) leaves 4 h after treatment. These insensitive species demonstrate a linear decline of Kleaf with ,leaf, while Kleaf in the two sensitive species falls precipitously at a critical water deficit. 5We propose that a sigmoidal Kleaf vulnerability enables a high diurnal yield of CO2 at the cost of exposing leaves to the possibility of xylem cavitation. Linear Kleaf vulnerability leads to a relatively lower CO2 yield, while providing better protection against cavitation. [source]


Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade

FUNCTIONAL ECOLOGY, Issue 4 2005
C. K. AUGSPURGER
Summary 1Carbon gain during phenological avoidance of canopy shade by an understorey plant depends on the extent of avoidance, the leaf stage during avoidance, and whether young and old leaves can exploit greater light availability in spring and autumn. 2For Asimina triloba (L.) Dunal., Aesculus glabra Willd., Acer saccharum Marsh., Lindera benzoin (L.) Blume and Carpinus caroliniana Walt. in a deciduous forest in Illinois, USA, spring avoidance with leaves at full size ranged from 0 days for Asimina to 24 days for Aesculus, and brought 36,98% of estimated total annual irradiance. Autumn avoidance was non-existent to minimal in all species. 3Total chlorophyll reached maximum concentrations at the middle of leaf life span, and declined well before senescence. Leaf nitrogen concentrations and net photosynthetic capacity both peaked in youngest leaves during spring avoidance, and were low in old leaves during autumn avoidance. 4Aesculus had especially high photosynthetic capacity during precanopy closure, while Asimina had relatively low capacity in its later developing leaves. 5Young leaves of species with phenological avoidance can enhance C gain, while old leaves in autumn do not. Thus phenological avoidance in spring may enhance the persistence of understorey woody individuals of some species. [source]


Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats

FUNCTIONAL ECOLOGY, Issue 4 2001
I. J. Wright
Summary 1,Relationships were examined among photosynthetic capacity (Amass and Aarea), foliar dark respiration rate (Rd-mass and Rd-area), stomatal conductance to water (Gs), specific leaf area (SLA), and leaf nitrogen (N) and phosphorus (P) across 79 perennial species occurring at four sites with contrasting rainfall levels and soil nutrients in eastern Australia. We hypothesized that the slope of log,log ,scaling' relationships between these traits would be positive and would not differ between sites, although slope elevations might shift between habitat types. 2,Amass, Rd-mass, SLA, Nmass and Pmass were positively associated in common slopes fitted across sites or rainfall zones, although rather weakly within individual sites in some cases. The relationships between Amass (and Rd-mass) with each of Nmass and SLA were partially independent of each other, with Amass (or Rd-mass) increasing with SLA at a given Nmass, or with Nmass at a given SLA (only weakly in the case of Amass). These results improve the quantification and extend the generalization of reported patterns to floras largely unlike those studied previously, with the additional contribution of including phosphorus data. 3,Species from drier sites differed in several important respects. They had (i) higher leaf N and P (per dry mass or area); (ii) lower photosynthetic capacity at a given leaf N or P; (iii) higher Rd-mass at a given SLA or Amass; and (iv) lower Gs at a given Aarea (implying lower internal CO2 concentration). 4,These trends can be interpreted as part of a previously undocumented water conservation strategy in species from dry habitats. By investing heavily in photosynthetic enzymes, a larger drawdown of internal CO2 concentration is achieved, and a given photosynthetic rate is possible at a lower stomatal conductance. Transpirational water use is similar, however, due to the lower-humidity air in dry sites. The benefit of the strategy is that dry-site species reduce water loss at a given Aarea, down to levels similar to wet-site species, despite occurring in lower-humidity environments. The cost of high leaf N is reflected in higher dark respiration rates and, presumably, additional costs incurred by N acquisition and increased herbivory risk. [source]


Growth and physiological acclimation to temperature and inorganic carbon availability by two submerged aquatic macrophyte species, Callitriche cophocarpa and Elodea canadensis

FUNCTIONAL ECOLOGY, Issue 2 2000
B. Olesen
Abstract 1.,Interactive effects of temperature and inorganic carbon availability on photosynthetic acclimation and growth of two submerged macrophyte species, Elodea canadensis and Callitriche cophocarpa, were examined to test the hypotheses that: (1) effects of temperature on growth rate and photosynthetic acclimation are suppressed under low inorganic carbon availability; (2) the plants compensate for the reduction in activity of individual enzymes at lower temperatures by increasing the activity per unit plant mass, here exemplified by Rubisco. The experiments were performed in the laboratory where plants were grown in a factorial combination of three temperatures (7,25 °C) and three inorganic carbon regimes. 2.,The relative growth rate of both species was strongly affected by growth conditions and increased by up to 4·5 times with increased temperature and inorganic carbon availability. The sensitivity to inorganic carbon was greatest at high temperature and the sensitivity to temperature greatest at high carbon concentrations. 3.,Photosynthetic acclimation occurred in response to growth conditions for both species. The affinity for inorganic carbon and the photosynthetic capacity, both measured at 15 °C, increased with reduced inorganic carbon availability during growth and were greater at warmer than at cooler growth temperature. The acclimative change in photosynthesis was related to the extent of temperature and inorganic carbon stress. Using data for Elodea, a negative relationship between degree of temperature stress and photosynthetic performance was found. In relation to inorganic carbon, a linear increase in CO2 affinity and photosynthetic capacity was found with increased inorganic carbon stress during growth. 4.,The total Rubisco activity declined with increased inorganic carbon availability during growth and with enhanced growth temperature. In addition, the activation state of Rubisco was higher at cooler than at warmer temperatures for Callitriche. This suggests that low-temperature grown plants compensate for the temperature-dependent reduction in activity of the individual Rubisco molecules by enhancing resource allocations towards Rubisco. [source]


Faster returns on ,leaf economics' and different biogeochemical niche in invasive compared with native plant species

GLOBAL CHANGE BIOLOGY, Issue 8 2010
JOSEP PENUELAS
Abstract Plant-invasive success is one of the most important current global changes in the biosphere. To understand which factors explain such success, we compared the foliar traits of 41 native and 47 alien-invasive plant species in Oahu Island (Hawaii), a location with a highly endemic flora that has evolved in isolation and is currently vulnerable to invasions by exotic plant species. Foliar traits, which in most cases presented significant phylogenetic signal, i.e. closely related species tended to resemble each other due to shared ancestry, separated invasive from native species. Invasive species had lower leaf mass per area and enhanced capacities in terms of productivity (photosynthetic capacity) and nutrient capture both of macro- (N, P, K) and microelements (Fe, Ni, Cu and Zn). All these differences remain highly significant after removing the effects of phylogenetic history. Alien-invasive species did not show higher efficiency at using limiting nutrient resources, but they got faster leaf economics returns and occupied a different biogeochemical niche, which helps to explain the success of invasive plants and suggests that potential increases in soil nutrient availability might favor further invasive plant success. [source]


Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur

GLOBAL CHANGE BIOLOGY, Issue 11 2004
Malcolm Possell
Abstract The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 ,mol photons m,2 s,1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well-ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near-saturating light largely depend on the effects on photosynthetic electron transport capacity. [source]


Assessing forest growth across southwestern Oregon under a range of current and future global change scenarios using a process model, 3-PG

GLOBAL CHANGE BIOLOGY, Issue 1 2001
N. C. Coops
Summary With improvements in mapping regional distributions of vegetation using satellite-derived information, there is an increasing interest in the assessment of current limitations on forest growth and in making projections of how productivity may be altered in response to changing climatic conditions and management policies. We utilised a simplified physiologically based process model (3-PG) across a 54 000 km2 mountainous region of southwestern Oregon, USA, to evaluate the degree to which maximum periodic mean annual increment (PAI) of forests could be predicted at a set of 448 forest inventory plots. The survey data were pooled into six broad forest types (coastal rain forest, interior coast range forest, mixed conifer, dry-site Douglas-fir, subalpine forest, and pine forest) and compared to the 3-PG predictions at a spatial resolution of 1 km2. We found good agreement (r2 = 0.84) between mean PAI values of forest productivity for the six forest types with those obtained from field surveys. With confidence at this broader level of integration, we then ran model simulations to evaluate the constraints imposed by (i) soil fertility under current climatic conditions, (ii) the effect of doubling monthly precipitation across the region, and (iii) a widely used climatic change scenario that involves modifications in monthly mean temperatures and precipitation, as well as a doubling in atmospheric CO2 concentrations. These analyses showed that optimum soil fertility would more than double growth, with the greatest response in the subalpine type and the least increase in the coastal rain forests. Doubling the precipitation increased productivity in the pine type (> 50%) with reduced responses elsewhere. The climate change scenario with doubled atmospheric CO2 increased growth by 50% on average across all forest types, primarily as a result of a projected 33% increase in photosynthetic capacity. This modelling exercise indicates that, at a regional scale, a general relationship exists between simulated maximum leaf area index and maximum aboveground growth, supporting the contention that satellite-derived estimates of leaf area index may be good measures of the potential productivity of temperate evergreen forests. [source]


Structural heterogeneity and productivity of a tall fescue pasture grazed rotationally by cattle at four stocking densities

GRASSLAND SCIENCE, Issue 1 2008
Maria Silvia Cid
Abstract The spatial heterogeneity in the structure and the productivity of the vegetation was examined in a tall fescue (Festuca arundinacea Schreb.) pasture rotationally grazed at four stocking densities in the Pampean region of Argentina. The examined pasture was grazed at the stocking densities of 3.6, 4.6, 5.6 and 6.6 animals ha,1 with a two-paddock 14-day rotational grazing system. Spatial distribution of plant height was examined as well as the percentages of short patch area (heavily utilized patches) or tall patch area (areas ungrazed or lightly defoliated). In addition, biomass, growth rate and relative growth rate were assessed for both short and tall patches. Grazing generated patchiness in vegetation structure and growth at all stocking densities. Increased stocking density caused an increase in the percentage of the short patch area in the paddocks. Short patches had relatively less live biomass than tall ones, but their relative growth rate was 31% higher than that of tall patches (0.021 ± 0.007 vs 0.016 ± 0.005 g DM g DM,1 day,1). The increase in stocking density enlarged the proportion of short patch areas with higher relative growth rate. The relative growth rate (average between short and tall patches) of the two highest stocking densities was 61.7% higher than that of the low stocking density treatments (0.023 ± 0.006 vs 0.014 ± 0.004 g DM g DM,1 day,1). Although the growth rate of the short patches did not exceed the value of the tall patches, the high value of relative growth rate appeared to indicate a higher photosynthetic capacity of the short patches. Moreover, live biomass did not decrease during the experimental period even in the short patch areas showing that, in the particular conditions of our study, overgrazing did not occur at the range of the stocking density examined. [source]


Effects of Interspecific Interactions between Microcystis aeruginosa and Chlorella pyrenoidosa on Their Growth and Physiology

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2007
Min Zhang
Abstract Interactions between Microcystis aeruginosa and Chlorella pyrenoidosa were analyzed by flow cytometry and by phytoplankton pulse-amplitude-modulated fluorimetry (Phyto-PAM) in joint cultures as well as in cultures separated by dialysis membranes. Results showed that the growth of C. pyrenoidosa was greater than that of M. aeruginosa, and that the growth of M.aeruginosa but not the growth of C. pyrenoidosa was significantly inhibited by the interactions between M. aeruginosa and C. pyrenoidosa. Culture filtrates of these two algae showed no apparent effects on the growth of the competing species. For M. aeruginosa, decreases in esterase activity, chlorophyll a fluorescence, and maximum quantum yield were observed in joint cultures, indicating that the metabolic activity and photosynthetic capacity of M.aeruginosa were suppressed. Light limitation from the shading effect of C. pyrenoidosa may be the main reason for such inhibition. For C. pyrenoidosa, esterase activity was suppressed in membrane-separated and joint cultures, suggesting that C.pyrenoidosa was probably affected by allelopathic substances secreted by M.aeruginosa. However, no significant difference was observed in the chlorophyll a fluorescence and maximum quantum yield of C. pyrenoidosa in the two cultures. In addition, interspecific interactions induced a reduction in size in both M. aeruginosa and C.pyrenoidosa, which may contribute to the development of C. pyrenoidosa dominance in the present study. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Exogenously Applied Nitric Oxide Enhances the Drought Tolerance in Fine Grain Aromatic Rice (Oryza sativa L.)

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2009
M. Farooq
Abstract Drought stress is a severe threat to the sustainable rice production, which causes oxidative damage and disturbs plant water relations, while exogenously applied nitric oxide (NO) may have the potential to alleviate these effects in rice plants. In this study, the role of NO to improve drought tolerance in fine grain aromatic rice (Oryza sativa L. cv. Basmati 2000) was evaluated. Sodium nitroprusside, a NO donor, was used at 50, 100 and 150 ,mol l,1 both as seed priming and foliar spray. To prime, the seeds were soaked in aerated NO solution of respective solution for 48 h and dried back to original weight. Primed and non-primed seeds were sown in plastic pots with normal irrigation in a greenhouse. At four leaf stage, plants were subjected to drought stress except the controls, which were kept at full field capacity. Drought was maintained at 50 % of field capacity by watering when needed. Two controls were maintained; both receiving no NO treatments as foliar application or seed treatment, one under drought conditions and the other under well-watered conditions. Drought stress seriously reduced the rice growth, but both methods of NO application alleviated the stress effects. Drought tolerance in rice was strongly related to the maintenance of tissue water potential and enhanced capacity of antioxidants, improved stability of cellular membranes and enhanced photosynthetic capacity, plausibly by signalling action of NO. Foliar treatments proved more effective than the seed treatments. Among NO treatment, 100 ,mol l,1 foliar spray was more effective. [source]


Clonal variation in morphological and physiological responses to irradiance and photoperiod for the aquatic angiosperm Potamogeton pectinatus

JOURNAL OF ECOLOGY, Issue 5 2002
Jörn Pilon
Summary 1Widely distributed plants are exposed to contrasting gradients in irradiance and photoperiod across latitude. We investigated the relative contribution of local specialization and phenotypic plasticity to variation in plant growth for three clones of the aquatic angiosperm Potamogeton pectinatus L., originating from 42.5 to 68° N. Plants were grown at a factorial combination of two irradiances (50 and 350 µmol m,2 s,1) and three photoperiods (13, 16 and 22 h) and morphology, gas-exchange rate and biomass accumulation were recorded. 2The overall response to variation in irradiance and photoperiod was similar for all three clones. 3Differences in irradiance resulted in strong acclimative changes in morphological and physiological characteristics. At low irradiance, pronounced vertical shoot extension compensated for the limited plasticity in leaf area production, while photosynthetic capacity, apparent quantum yield and total chlorophyll concentration increased. As a result, biomass yield at the end of the experimental period was similar in both treatments. 4A decrease in photoperiod also resulted in plastic changes in morphology (increase of leaf biomass per unit plant biomass) and physiology (increase of photosynthetic capacity). However, these acclimative responses did not fully compensate for differences in photoperiod, since biomass was significantly lower under 13 and 16 h photoperiods than at 22 h. 5P. pectinatus is therefore phenotypically plastic, rather than locally specialized to differences in irradiance and photoperiod. [source]


CHARACTERIZING AND QUANTIFYING PHOTOINHIBITION IN INTERTIDAL MICROPHYTOBENTHOS,

JOURNAL OF PHYCOLOGY, Issue 4 2004
Gérard F. Blanchard
This study characterizes the short-term influence of the sustained saturating irradiance encountered by the microphytobenthos inhabiting intertidal mudflats. The kinetics of photoinhibition in epipelic microalgae from intertidal mudflats were investigated in the laboratory. Previously isolated benthic microalgae were exposed to a saturating photon flux density (PFD) for periods ranging from 0 to 180 min; every 30 min, a photosynthesis-irradiance curve was established to quantify the effect of the saturating PFD on both parameters ,B, the photosynthetic efficiency, and PmB, the photosynthetic capacity. The ,B decreased from the beginning of light exposure until the end, whereas PmB first slightly increased and then diminished from 90 min exposure onward. It turned out that epipelic microphytobenthos undergoes photoinhibition after about 90 min of saturating PFD. The possible ecological consequences of these ecophysiological results are discussed. [source]


PHOTOSYNTHETIC FUNCTION IN DUNALIELLA TERTIOLECTA (CHLOROPHYTA) DURING A NITROGEN STARVATION AND RECOVERY CYCLE

JOURNAL OF PHYCOLOGY, Issue 5 2003
Erica B. Young
Phytoplankton can be exposed to periods of N starvation with episodic N resupply. N starvation in Dunaliella tertiolecta (Butcher) measured over 4 days was characterized by slow reduction in cell chl and protein content and chl/carotenoid ratio and a decline in photosynthetic capacity and maximum quantum yield of photosynthesis (Fv/Fm). In the early stages of N starvation, cell division was maintained despite reduction in cellular chl. Chl content was more sensitive than carotenoids to N deprivation, and cellular chl a was maintained preferentially over chl b under N starvation. NO3, resupply stimulated rapid and complete recovery of Fv/Fm (from 0.4 to 0.7) within 24 h and commencement of cell division after 10 h, although N-replete levels of cell chl and protein were not reestablished within 24 h. Recovery of Fv/Fm was correlated with increases in cell chl and protein and was more related to increases in Fm than to changes in F0. Recovery of Fv/Fm was biphasic with a second phase of recovery commencing 4,6 h after resupply of NO3,. Uptake of NO3, from the external medium and the recovery of Fv/Fm, cell chl, and protein were inhibited when either cytosolic or chloroplastic protein synthesis was inhibited by cycloheximide or lincomycin, respectively; a time lag observed before maximum NO3, uptake was consistent with synthesis of NO3, transporters and assimilation enzymes. When both chloroplastic and cytosolic translation was inhibited, Fv/Fm declined dramatically. Dunaliella tertiolecta demonstrated a capacity to rapidly reestablish photosynthetic function and initiate cell division after N resupply, an important strategy in competing for limiting inorganic N resources. [source]


PLASTID FATTY ACID BIOSYNTHESIS IN THE DIATOMS NITZSCHIA ALBA AND NITZSCHIA LAEVIS

JOURNAL OF PHYCOLOGY, Issue 2000
K.M. McGinnis
The role of the plastid in fatty acid biosynthesis in the non-photosynthetic diatom Nitzschia alba was studied and compared to that in the photosynthetic, closely related Nitzschia laevis. Transmission electron microscopy was used to analyze structural features of the plastid that may be relevant to biochemical function. Typical of a photosynthetic diatom, N. laevis had a chloroplast envelope composed of four membranes, and had abundant chloroplast ribosomes. The leucoplast of N. alba also had a multi-membrane envelope, chloroplast ribosomes, and a genome that encodes plastid specific proteins. This suggested that the plastid of N. alba may still possess the biochemical functions of the chloroplast, aside from photosynthesis. To determine whether plastidial fatty acid biosynthesis occurred in N. alba, the response of the two diatoms to the compound thiolactomycin was compared. Thiolactomycin has been shown to effect keto-acyl-ACP-synthases, and specifically inhibits the plastidial fatty acid biosynthetic pathway. While growth of N. alba was not impacted by thiolactomycin as in N. laevis, neutral lipid accumulation and fatty acid composition was impacted by thiolactomycin in both organisms. These findings suggest that the plastidial fatty acid biosynthetic pathway does exist in the leucoplast of N. alba, although it lacks photosynthetic capacity. [source]


Seasonal climate effects on root colour and compounds of red radish

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 11 2002
M Schreiner
Abstract ,Nevadar' radishes were grown throughout the year. Climate parameters (mean temperature, mean irradiation) and quality characteristics of radishes fulfilling consumer quality requirements, such as root colour, glucosinolates, monosaccharides and pectic substances, were determined. The quality characteristics strongly differed depending on the seasonal climate conditions. The seasonal dependence ranged from a slight climate influence (alkenyl glucosinolates r2,=,0.23), over a moderate climate effect (indolyl glucosinolates r2,=,0.40, glucose r2,=,0.50) up to a strongly distinctive climate influence (hue angle r2,=,0.77, chroma r2,=,0.72, fructose r2,=,0.81, pectic substances r2,=,0.99). Therefore, according to consumer-oriented quality production of radish, the temperature and irradiation influence should be taken into account in the production process. Recommendations for quality production of radish will be the selection of bright red cultivars marked by a high photosynthetic capacity (yield,>,0.80,mV) at relatively low mean irradiation intensities (50,100,µmol ,m2,s,1) and lower mean temperatures (11,13,°C). Thus sufficient photochemical energy can be provided for the synthesis of quality-determining compounds. For the production of bioactive radishes showing particularly relatively high contents of indolyl glucosinolates, cultivation should be carried out in spring and autumn. In summer cultivation, consumer preferences in taste can particularly be satisfied with the desired contents of alkenyl glucosinolates and monosaccharides. © 2002 Society of Chemical Industry [source]


Vertical distribution of Hymenophyllaceae species among host tree microhabitats in a temperate rain forest in Southern Chile

JOURNAL OF VEGETATION SCIENCE, Issue 4 2009
Maria J. Parra
Abstract Question: Are differences in microhabitat preferences of co-occurring epiphytic Hymenophyllaceae species (filmy ferns) correlated with differences in ecophysiological responses to light availability and humidity in the host tree? Location: The Andean foothills in south-central Chile. Methods: We evaluated the distribution pattern of nine filmy fern species in microhabitats that differ in light availability and humidity in four host tree species. A DCA was developed to assess Hymenophyllaceae species microhabitat preference in terms of canopy openness (CO) and relative humidity. We assessed whether differences in chlorophyll content, maximum photochemical efficiency (Fv/Fm), photosynthetic capacity (Amax), evapotranspiration (E) and instantaneous water use efficiency (WUE) are consistent with any pattern. Results: CO and relative humidity differed significantly with height in the host trees. While CO increased with height in a host tree, relative humidity decreased. DCA analysis showed that filmy fern species distribution within and among trees was mainly explained by the relative humidity of the microhabitat. Chlorophyll content, chlorophyll a/b ratio, Amax and E differed significantly among filmy fern species. Amax and E were correlated with axis 1 scores from the DCA analysis. Conclusions: The vertical distribution and abundance of filmy fern species in Chilean temperate rain forest seems to be closely related to the different microhabitats offered by host trees. This pattern may reflect interspecific differences in ecophysiological traits related both to light availability and humidity. Our results suggest that humidity is the main environmental factor driving functional responses and habitat preferences of these filmy fern species. [source]


Winter down-regulation of intrinsic photosynthetic capacity coupled with up-regulation of Elip-like proteins and persistent energy dissipation in a subalpine forest

NEW PHYTOLOGIST, Issue 2 2006
C. Ryan Zarter
Summary ,,Overwintering, sun-exposed and photosynthetically inactive evergreens require powerful photoprotection. The goal of this study was to seasonally characterize photosynthesis and key proteins/components involved in electron transport and photoprotection. ,,Maximal photosystem II (PSII) efficiency and photosynthetic capacity, amounts of zeaxanthin (Z), antheraxanthin (A), pheophytin and proteins (oxygen-evolving 33 kDa protein (OEC), PSII core protein D1 and subunit S (PsbS) protein, and members of the early light-inducible protein (Elip) family) were assessed in five conifer species at high altitude and in ponderosa pine (Pinus ponderosa) at moderate altitude during summer and winter. ,,Relative to summer, winter down-regulation of photosynthetic capacity and loss of PSII efficiency at the high-altitude sites were paralleled by decreases in OEC, D1, and pheophytin; massive nocturnal retention of (Z + A) and up-regulation of two to four proteins cross-reactive with anti-Elip antibodies; and no change in PsbS amount. By contrast, ponderosa pine at moderate altitude exhibited no down-regulation of photosynthetic capacity, smaller depressions in PSII efficiency, and less up-regulation of Elip family members. ,,These results support a function for members of the Elip family in the acclimation of sun-exposed needles that down-regulate photosynthesis during winter. A possible role in sustained photoprotection is considered. [source]


Photosynthesis within isobilateral Eucalyptus pauciflora leaves

NEW PHYTOLOGIST, Issue 4 2006
John R. Evans
Summary ,,Adult Eucalyptus pauciflora leaves are vertically displayed. They have multiple palisade cell layers beneath both surfaces, interrupted by numerous oil glands. Here, we characterized light absorption, chlorophyll, photosynthetic capacity and CO2 fixation profiles through these leaves. ,,Multiple chlorophyll fluorescence images of leaves viewed in cross-section were made by applying light from different directions. 14CO2 labelling, followed by paradermal cryosectioning, was used to measure profiles of photosynthesis. ,,Photosynthetic capacity peaked 75 µm into the mesophyll beneath each surface and was lowest in the centre of the 600-µm-thick leaf. Predictions by a multilayer model using Beer's law matched the observed profiles of 14C fixation. When constrained to the horizontal, a vertically acclimated leaf gains only 79% of the daily photosynthesis achieved by a horizontally acclimated leaf. However, it outperforms the horizontally acclimated leaf when both are oriented vertically. ,,Each half of the observed profile of photosynthetic capacity closely matches the profile of light absorption through the leaf with unilateral illumination to that surface. Derivation of biochemical parameters from gas exchange measured under unilateral illumination would underestimate the real photosynthetic capacity of these leaves by 21%. [source]


A test of the generality of leaf trait relationships on the Tibetan Plateau

NEW PHYTOLOGIST, Issue 4 2006
Jin-Sheng He
Summary ,,Leaf mass per area (LMA), nitrogen concentration (on mass and area bases, Nmass and Narea, respectively), photosynthetic capacity (Amass and Aarea) and photosynthetic nitrogen use efficiency (PNUE) are key foliar traits, but few data are available from cold, high-altitude environments. ,,Here, we systematically measured these leaf traits in 74 species at 49 research sites on the Tibetan Plateau to examine how these traits, measured near the extremes of plant tolerance, compare with global patterns. ,,Overall, Tibetan species had higher leaf nitrogen concentrations and photosynthetic capacities compared with a global dataset, but they had a slightly lower Amass at a given Nmass. These leaf trait relationships were consistent with those reported from the global dataset, with slopes of the standardized major axes Amass,LMA, Nmass,LMA and Amass,Nmass identical to those from the global dataset. Climate only weakly modulated leaf traits. ,,Our data indicate that covarying sets of leaf traits are consistent across environments and biogeographic regions. Our results demonstrate functional convergence of leaf trait relationships in an extreme environment. [source]


Physiological Responses of Acropora cervicornis to Increased Solar Irradiance,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Juan L. Torres
ABSTRACT The effects of increased UV radiation (UV-B [280,320 nm] + UV-A [320,400 nm]; hereafter UVR) on the growth, production of photosynthetic pigments and photoprotective mycosporine-like amino acids (MAAs) were studied in the threatened Caribbean coral Acropora cervicornis transplanted from 20 to 1 m depth in La Parguera, Puerto Rico. The UVR exposure by the transplanted colonies was significantly higher than that at 20 m, while photosynthetically active radiation (PAR) only increased by 9%. Photosynthetic pigments, quantified with HPLC, as well as linear extension rates and skeletal densities, were significantly reduced 1 month after transplantation to 1 m depth, while MAAs increased significantly despite immediate paling experienced by transplanted colonies. While these colonies showed a significant reduction in photosynthetic pigments, there were no significant reductions in zooxanthellae densities suggesting photoacclimation of the coral's symbionts to the new radiation conditions. The results suggest that while corals might be able to survive sudden increases in UVR and PAR, their skeletal structure can be greatly debilitated due to a reduction in the photosynthetic capacity of their symbionts and a possible relocation of resources. [source]


Sensitivity of the Early Life Stages of Macroalgae from the Northern Hemisphere to Ultraviolet Radiation,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Michael Y. Roleda
The reproductive cells of macroalgae are regarded as the life history stages most susceptible to various environmental stresses, including UV radiation (UVR). UVR is proposed to determine the upper depth distribution limit of macroalgae on the shore. These hypotheses were tested by UV-exposure experiments, using spores and young thalli of the eulittoral Rhodophyceae Mastocarpus stellatus and Chondrus crispus and various sublittoral brown macroalgae (Phaeophyceae) with different depth distribution from Helgoland (German Bight) and Spitsbergen (Arctic). In spores, the degree of UV-induced inhibition of photosynthesis is lower in eulittoral species and higher in sublittoral species. After UV stress, recovery of photosynthetic capacity is faster in eulittoral compared to sublittoral species. DNA damage is lowest while repair of DNA damage is highest in eulittoral compared to sublittoral species. When the negative impact of UVR prevails, spore germination is inhibited. This is observed in deep water kelp species whereas the same UVR doses do not inhibit germination of shallow water kelp species. A potential acclimation mechanism to increase UV tolerance of brown algal spores is the species-specific ability to increase the content of UV-absorbing phlorotannins in response to UV-exposure. Growth rates of young Mastocarpus and Chondrus gametophytes exposed to experimental doses of UVR are not affected while growth rates of all young kelp sporophytes exposed to UVR are significantly lowered. Furthermore, morphological UV damage in Laminaria ochroleuca includes tissue deformation, lesion, blistering and thickening of the meristematic part of the lamina. The sensitivity of young sporophytes to DNA damage is correlated with thallus thickness and their optical characteristics. Growth rate is an integrative parameter of all physiological processes in juvenile plants. UV inhibition of growth may affect the upper distribution depth limit of adult life history stages. Juveniles possess several mechanisms to minimize UVR damage and, hence, are less sensitive but at the expense of growth. The species-specific susceptibility of the early life stages of macroalgae to UVR plays an important role for the determination of zonation patterns and probably also for shaping up community structure. [source]


Comparison by PAM Fluorometry of Photosynthetic Activity of Nine Marine Phytoplankton Grown Under Identical Conditions,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2005
P. Juneau
ABSTRACT The photosynthetic activity of marine phytoplankton from five algal classes (Phaeodactylum tricornutum, Skeletonema costatum, Thalassiosira oceanica, Thalassiosira weissflogii, Dunaliella tertiolecta, Mantoniella squamata, Emiliania huxleyi, Pavlova lutheri and Heterosigma akashiwo) was investigated under identical growth conditions to determine interspecies differences. Primary photochemistry and electron transport capacity of individual species were examined by pulse amplitude-modulated (PAM) fluorescence. Although few differences were found in maximal photosystem II (PSII) photochemical efficiency between various species, large differences were noticed in their PSII-photosystem I (PSI) electron transport activity. We found that species such as T. oceanica and M. squamata have much lower photochemical activity than H. akashiwo. It appeared that processes involved in electron transport activity were more susceptible to change during algal evolution compared with the primary photochemical act close to PSII. Large variations in the nonphotochemical energy dissipation event among species were also observed. Light energy required to saturate photosynthesis was very different between species. We have shown that M. squamata and H. akashiwo required higher light energy (>1300 ,mol m,2 s,1) to saturate photosynthesis compared with S. costatum and E. huxleyi (ca 280 ,mol m,2 s,1). These differences were interpreted to be the result of variations in the size of lightharvesting complexes associated with PSII. These disparities in photosynthetic activity might modulate algal community structure in the natural environment where light energy is highly variable. Our results suggest that for an accurate evaluation of primary productivity from fluorescence measurements, it is essential to know the species composition of the algal community and the individual photosynthetic capacity related to the major phytoplankton species present in the natural phytoplankton assemblage. [source]


The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance

PHYSIOLOGIA PLANTARUM, Issue 1 2007
Abram J. Strauss
Dark chilling affects growth and yield of warm-climate crops such as soybean [Glycine max (L.) Merr.]. Several studies have investigated chilling-stress effects on photosynthesis and other aspects of metabolism, but none have compared effects of whole-plant chilling (WPC; shoots and roots) with that of aboveground chilling in legumes. This is important because low root temperatures might induce additional constraints, such as inhibition of N2 fixation, thereby aggravating chilling-stress symptoms. Effects of dark chilling on PSII, shoot growth, leaf ureide content and photosynthetic capacity were studied in two soybean genotypes, Highveld Top (chilling tolerant) and PAN809 (chilling sensitive), in experiments comparing effects of WPC with that of shoot chilling (SC). Both treatments inhibited shoot growth in PAN809 but not Highveld Top. Also, WPC in PAN809 caused a decrease in leaf ureide content followed by severe chlorosis and alterations in O-J-I-P fluorescence-rise kinetics, distinct from SC. A noteworthy difference was the appearance of a ,K peak in the O-J-I-P fluorescence rise in response to WPC. These genotypic and treatment differences also reflected in the degree of inhibition of CO2 assimilation rates. The appearance of a ,K peak, coupled with growth inhibition, reduced ureide content, chlorosis and lower CO2 assimilation rates, provides mechanistic information about how WPC might have aggravated chilling-stress symptoms in PAN809. We introduce a model explaining how chilling soil temperatures might trigger N-limitation in sensitive genotypes and how characteristic changes in O-J-I-P fluorescence-rise kinetics are linked to changes in carbon and nitrogen metabolism. [source]