Photons M (photon + m)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Photons M

  • mol photon m


  • Selected Abstracts


    The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain)

    ENVIRONMENTAL MICROBIOLOGY, Issue 4 2000
    Eric Epping
    We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat was incubated in the laboratory at 15, 20, 25 and 30°C at incident irradiances ranging from 0 to 1000 µmol photons m,2 s,1. Oxygen microsensors were used to measure steady-state oxygen profiles and the rates of gross photosynthesis, which allowed the calculation of areal gross photosynthesis, areal net oxygen production, and oxygen consumption in the aphotic layer of the mat. The lowest surface irradiance that resulted in detectable rates of gross photosynthesis increased with increasing temperature from 50 µmol photons m,2 s,1 at 15°C to 500 µmol photons m,2 s,1 at 30°C. These threshold irradiances were also apparent from the areal rates of net oxygen production and point to the shift of M. chthonoplastes from anoxygenic to oxygenic photosynthesis and stimulation of sulphide production and oxidation rates at elevated temperatures. The rate of net oxygen production per unit area of mat at maximum irradiance, J0, did not change with temperature, whereas, JZphot, the flux of oxygen across the lower boundary of the euphotic zone increased linearly with temperature. The rate of oxygen consumption per volume of aphotic mat increased with temperature. This increase occurred in darkness, but was strongly enhanced at high irradiances, probably as a consequence of increased rates of photosynthate exudation, stimulating respiratory processes in the mat. The compensation irradiance (Ec) marking the change of the mat from a heterotrophic to an autotrophic community, increased exponentially in this range of temperatures. [source]


    Variability of the photosynthetic antenna of a Pelodictyon clathratiforme population from a freshwater holomictic pond

    FEMS MICROBIOLOGY ECOLOGY, Issue 1 2001
    Frederic B. Gich
    Abstract A population of the green sulfur bacterium Pelodictyon clathratiforme was monitored during the stratification period of Coromina Lake, a freshwater, holomictic pond of the Banyoles lacustrine area (Girona, NE Spain). The chromatographic analysis of this population revealed the presence of a wide variety of both bacteriochlorophyll (BChl) d and BChl c homologues. Isolation of chlorosomes from cultured Pelodictyon cells and their further analysis by steady-state fluorescence indicated that, although both pigment were present in chlorosomes, only BChl c gave rise to an emission signal, suggesting a fast energy transfer from BChl d to BChl c. Likewise, chlorosomes isolated from natural samples were significantly larger (60,70 nm in width and 115,120 nm in length) than those isolated from cells grown in laboratory under optimal light conditions (48±6.8 nm and 100±15.8 nm in width and length, respectively). The potential role of heterogeneous BChl c - and BChl d -containing chlorosomes and the differences in chlorosome size measured are discussed in terms of the severe light limitation (available light intensity <0.1 ,mol photons m,2 s,1 at the bacterial plate) under which the population subsisted during the study period. [source]


    Growth rates of phytoplankton under fluctuating light

    FRESHWATER BIOLOGY, Issue 2 2000
    Elena Litchman
    Summary 1The effect of light fluctuations on the growth rates of four species of freshwater phytoplankton was investigated. Experimental light regimes included constant irradiance and fluctuations of a step function form, with equal proportion of high (maximum of 240 µmol photons m -2 s -1) and low light (minimum of 5 µmol photons m -2 s -1) (or dark) in a period. Fluctuations of 1, 8 and 24-h periods were imposed over several average irradiances (25, 50, 100 and 120 µmol photons m -2 s -1). 2Growth rate responses to fluctuations were species-specific and depended on both the average irradiance and the period of fluctuations. Fluctuations at low average irradiances slightly increased growth rate of the diatom Nitzschia sp. and depressed growth of the cyanobacterium Phormidium luridum and the green alga Sphaerocystis schroeteri compared to a constant irradiance. 3Fluctuations at higher average irradiance did not have a significant effect on the growth rates of Nitzschia sp. and Sphaerocystis schroeteri (fluctuations around saturating irradiances) and slightly increased the growth rates of the cyanobacteria Anabaena flos-aquae and Phormidium luridum (when irradiance fluctuated between limiting and inhibiting levels). 4In general, the effect of fluctuations tended to be greater when irradiance fluctuated between limiting and saturating or inhibiting levels of a species growth-irradiance curve compared to fluctuations within a single region of the curve. 5The growth rates of species under fluctuating light could not always be predicted from their growth-irradiance curves obtained under constant irradiance. When fluctuations occur between limiting and saturating or inhibiting irradiances for the alga and when the period of fluctuations is long (greater than 8 h), steady-state growth-irradiance curves may be insufficient to predict growth rates adequately. Consequently, additional data on physiological acclimation, such as changes in photosynthetic parameters, may be required for predictions under non-constant light supply in comparison to constant conditions. [source]


    Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur

    GLOBAL CHANGE BIOLOGY, Issue 11 2004
    Malcolm Possell
    Abstract The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 ,mol photons m,2 s,1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well-ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near-saturating light largely depend on the effects on photosynthetic electron transport capacity. [source]


    IMAGING OF OXYGEN DYNAMICS WITHIN THE ENDOLITHIC ALGAL COMMUNITY OF THE MASSIVE CORAL PORITES LOBATA,

    JOURNAL OF PHYCOLOGY, Issue 3 2008
    Michael Kühl
    We used transparent planar oxygen optodes and a luminescence lifetime imaging system to map (at a pixel resolution of <200 ,m) the two-dimensional distribution of O2 within the skeleton of a Porites lobata colony. The O2 distribution was closely correlated to the distribution of the predominant endolithic microalga, Ostreobium quekettii Bornet et Flahault that formed a distinct green band inside the skeleton. Oxygen production followed the outline of the Ostreobium band, and photosynthetic O2 production was detected at only 0.2 ,mol photons m,2 · s,1, while saturation occurred at ,37 ,mol photons m,2 · s,1. Oxygen levels varied from ,60% to 0% air saturation in the illuminated section of the coral skeleton in comparison to the darkened section. The O2 production within the Ostreobium band was lower in the region below the upward facing surface of the coral and elevated on the sides. Oxygen consumption in darkness was also greatest within the Ostreobium zone, as well as in the white skeleton zone immediately below the corallites. The rate of O2 depletion was not constant within zones and between zones, showing pronounced heterogeneity in endolithic respiration. When the coral was placed in darkness after a period of illumination, O2 levels declined by 50% within 20 min and approached steady-state after 40,50 min in darkness. Our study demonstrates the use of an important new tool in endolith photobiology and presents the first data of spatially resolved O2 concentration and its correlation to the physical structures and specific zones responsible for O2 production and consumption within the coral skeleton. [source]


    Chloroplast rotation and morphological plasticity of the unicellular alga Rhodosorus (Rhodophyta, Stylonematales)

    PHYCOLOGICAL RESEARCH, Issue 3 2002
    Sarah Wilson
    SUMMARY Time-lapse videomicroscopy was used to film chloroplast rotation in the 13 isolates of Rhodosorus marinus Geitler and one isolate of Rhodosorus magnei Fresnel & Billard maintained in culture. Cell diameter, rates of chloroplast rotation and the number of chloroplast lobes were measured in all isolates. Chloroplast rotation is a definitive characteristic of the genus Rhodosorus and should be included in its taxonomic description. Isolates of the type species, R. marinus, measure 4,7 ,m in diameter in low light (2,4 ,mol photons m,2 s,1) and 4.5,11.5 ,m in diameter in bright light (15,20 ,mol photons m,2 s,1), and have two to seven chloroplast lobes. Rhodosorus magnei is 9 ,m in diameter and has seven to nine chloroplast lobes in bright light. However, these cells are much smaller (approx. 4 ,m diam.) and have only two to three chloroplast lobes when maintained in low light. The species R. magnei was created based on its larger cell size and numerous chloroplast lobes compared with R. marinus, but since these characteristics were found to be quite variable and dependant on culture conditions, they cannot be used to differentiate these two species. [source]


    Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture

    PHYCOLOGICAL RESEARCH, Issue 2 2001
    Marcelo Ribeiro Zucchi
    SUMMARY The responses of relative growth rate (% day-1) and pigment content (chlorophyll a, phycocyanin and phycoerythrin) to temperature, irradiance and photoperiod were analyzed in culture in seven freshwater red algae: Audouinella hermannii (Roth) Duby, Audouinella pygmaea (Kützing) Weber-van Bosse, Batrachospermum ambiguum Montagne, Batrachospermum delicatulum (Skuja) Necchi et Entwisle,,Chantransia' stages of B. delicatulum and Batrachospermum macrosporum Montagne and Compsopogon coeruleus (C. Agardh) Montagne. Experimental conditions included temperatures of 10, 15, 20 and 25°C and low and high irradiances (65 and 300 ,mol photons m,2 s,1, respectively). Long and short day lengths (16:8 and 8:16 LD cycles) were also applied at the two irradiances. Growth effects of temperature and irradiance were evident in most algae tested, and there were significant interactions among treatments. Most freshwater red algae had the best growth under low irradiance, confirming the preference of freshwater red algae for low light regimens. In general there was highest growth rate in long days and low irradiance. Growth optima in relation to temperature were species-specific and also varied between low and high irradiances for the same alga. The most significant differences in pigment content were related to temperature, whereas few significant differences could be attributed to variation in irradiance and photoperiod or interactions among the three parameters. The responses were species-specific and also differed for pigments in distinct temperatures, irradiances and photoperiods in the same alga. Phycocyanin was generally more concentrated than phycoerythrin and phycobiliproteins were more concentrated than chlorophyll a. The highest total pigment contents were found in two species typical of shaded habitats: A. hermannii and C. coeruleus. The expected inverse relationship of pigment with irradiance was observed only in C. coeruleus. In general, the most favorable conditions for growth were not coincident with those with highest pigment contents. [source]