Home About us Contact | |||
Photoluminescence Studies (photoluminescence + studies)
Selected AbstractsCrystal Structure, Solid-State NMR Spectroscopic and Photoluminescence Studies of Organic-Inorganic Hybrid Materials (HL)6[Ge6(OH)6(hedp)6]·2(L)·nH2O, L = hqn or phen,EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 23 2006Luís Mafra Abstract Two germanium,hedp4, solids with heteroaromatic amines 8-hydroxyquinoline (hqn) and 1,10-phenanthroline (phen), (HL)6[Ge6(OH)6(hedp)6]·2(L)·nH2O (L = hqn or phen), in I and II respectively, have been prepared and characterised by single-crystal XRD, thermogravimetry, FTIR and UV/Vis spectroscopy. The complex hydrogen-bond networks, particularly in compound I, have been studied by advanced high-resolution solid-state NMR spectroscopy that combines homonuclear recoupling techniques (two-dimensional 1H- 1H DQF and 1H- 1H RFDR MAS NMR) and combined rotation and multiple-pulse spectroscopy (two-dimensional 1H- 1H FS-LG, 1H- 31P FS-LG). The fine details of the crystal structure of I have been elucidated, mainly those involving the ,,, stacking of 8-hydroxyquinoline and the relative orientation of adjacent such molecules. Compound II exhibits an emission from the lowest triplet-state energy (,,,* 0-phonon transition) of the aromatic rings at 320 nm (31250 cm,1) from 14 K to room temperature. In contrast, the triplet emission of I at 530 nm (18868 cm,1) is only detected at low temperature, because of thermally activated non-radiative mechanisms. The emission spectra of I and II display a lower-energy component with a larger life time, which results from the formation of an excimer state that originated from the ,,, phenanthroline and hydroxyquinoline interactions, respectively. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Reactivity of Cationic Lanthanide(III) Monoporphyrinates towards Anionic Cyanometallates , Preparation, Crystal Structure, and Luminescence Properties of Cyanido-Bridged Di- and Trinuclear d,f ComplexesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 22 2008Xunjin Zhu Abstract The metathesis reaction between two equivalents of [Ln(tpp)(H2O)3]Cl (Ln = Yb, Er; tpp2, = tetraphenylporphyrinate dianion) and one equivalent of cyanometallate in dmf at room temperature under nitrogen for 24 hours gave the cyanido-bridged d,f trinuclear complexes [{Ln(tpp)(dmf)n}2{(,-NC)2M(CN)2}] (Ln = Yb, n = 2, M = Ni, 1; Ln = Er, n = 3, M = Ni, 2; Ln = Yb, n = 2, M = Pt, 3; Ln = Er, n = 3, M = Pt, 4), a trinuclear complex [{Er(tpp)(dmf)2}{(,-NC)2Fe(CN)4}{Er(Htpp)(dmf)2}] (5), and a dinuclear complex [{Er(tpp)(dmf)(H2O)}(,-NC)Ag(CN)] (6) when the cyanometallate used was the dianion [M(CN)4]2, (M = Ni, Pt), the trianion [Fe(CN)6]3,, and monoanion [Ag(CN)2],, respectively. The solid-state structures of these complexes were ascertained by X-ray crystallography. Photoluminescence studies of complexes 1,4 showed that these complexes displayed photophysical properties characteristic of normal metal,porphyrinato complexes. Their absorption bands and emission peaks in the visible region are typical of the intraligand ,,,* transitions of the porphyrinato ligand. Furthermore, these complexes also exhibited emission characteristic of the lanthanide(III) ion in the near-infrared (NIR) region, which was quenched by the cyanometallates. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Designed Assembly and Structures and Photoluminescence of a New Class of Discrete ZnII Complexes of 1H -1,10-Phenanthroline-2-oneEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2006Jie-Peng Zhang Abstract The hydrothermal reaction of 1H -1,10-phenanthroline-2-one (Hophen), zinc acetate, benzoic acid (Hba), and triethylamine (3.0 mL) yields the tetranuclear complex [Zn4(,3 -OH)2(ophen)4(ba)2] (2), which features a chair-like Zn4(,3 -OH)2 cluster with two ba ligands centrosymmetrically oriented. [(OAc){Zn3(,3 -OH)(ophen)3}(ox){Zn3(,3 -OH)(ophen)3}(OAc)] (3; ox = oxalate) was isolated when less triethylamine (1.0 mL) was used. Two Zn3(,3 -OH)(ophen)3 clusters in 3 are linked together by an oxalate to form a dumbbell-like structure in which the acetate and oxalate ligands point outward from the Zn3(,3 -OH)(ophen)3 cluster with an acute bending angle. A geometric analysis reveals that Zn3(,3 -OH)(ophen)3 and dicarboxylate with an obtuse bending angle cannot form an infinite zigzag chain, whereas the ring isomer can. With isophthalate (ipa), thiophene-2,5-dicarboxylate (tda), and 4,4,-oxybis(benzoate) (oba) instead of the acetate of 3 three new complexes, namely [{Zn3(,3 -OH)(ophen)3}(ipa)2{Zn3(,3 -OH)(ophen)3}]·0.5H2O (4), [{Zn3(,3 -OH)(ophen)3}(tda)2{Zn3(,3 -OH)(ophen)3}] (5), and [{Zn3(,3 -OH)(ophen)3}(oba)2{Zn3(,3 -OH)(ophen)3}] (6), were obtained in which two Zn3(,3 -OH)(ophen)3 clusters are linked by a pair of ipa, tda, or oba ligands to form isostructural, cluster-based 2:2 metallomacrocycles. Photoluminescence studies of 2,6 revealed that their luminescent properties are derived from ophen-based ,-,* excited states. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Photoluminescence studies of isotopically enriched siliconPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2003D. Karaiskaj Abstract In this issue's Editor's Choice, the first high resolution photoluminescence (PL) investigations of isotopically pure silicon are reported. The cover figure shows the PL spectrum of the no-phonon transitions of an exciton bound to the neutral aluminum acceptor in 28Si, compared with the corresponding result from natural Si. It is seen that in the isotopically purified material the lines are shifted (as indicated by the horizontal arrow) and are sharper than in natural Si. Moreover, the splitting of the A0 ground state, as shown in the level scheme of the inset, is clearly absent in the 28Si sample, demonstrating that this splitting results from the random isotopic composition in natural Si. The paper is an invited presentation from the 10th International Conference on Shallow Level Centers in Semiconductors (SLCS-10) held in Warsaw, Poland, 24-27 July 2002. This issue of phys. stat. sol. (b) contains a second paper selected as Editor's Choice, entitled "Tunable spin-injection and magnetoconductance in a novel 2DEG-ferromagnet structure" by Y. Jiang and M. B. A. Jalil [2]. [source] Photoluminescence studies of isotopically enriched siliconPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2003D. Karaiskaj Abstract We report the first high resolution photoluminescence studies of isotopically pure silicon. New information is obtained on isotopic effects on the indirect band gap energy, phonon energies, and phonon broadenings, which is in good agreement with previous results obtained in germanium and diamond. Remarkably, the line widths of the no-phonon boron and phosphorus bound exciton transitions in the 28Si sample (99.896% 28Si) are much sharper than in natural Si, revealing new fine structure in the boron bound exciton luminescence. Most surprisingly, the small splittings of the neutral acceptor ground state in natural Si are absent in the photoluminescence spectra of acceptor bound excitons in isotopically purified 28Si, demonstrating conclusively that they result from the randomness of the Si isotopic composition. [source] Synthesis, Characterization, and Photophysical Properties of Some Heterodimetallic Bisporphyrins of Ytterbium and Transition Metals , Enhancement and Lifetime Extension of Yb3+ Emission by Transition-Metal Porphyrin SensitizationEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 21 2007Feng-Lei Jiang Abstract A series of d-f heterodimetallic bisporphyrin complexes (YbZn, YbPd, and YbPt), in which a YbIII porphyrinate moiety is linked to a transition-metal porphyrinate moiety by a flexible three-carbon chain, were synthesized. They were fully characterized by high-resolution mass spectrometry, 1H and 31P NMR spectroscopy, electronic absorption, andfluorescence methods. Variable-temperature near-infrared photoluminescence studies showed that the transition-metal porphyrinate moiety would enhance the ytterbium(III) emission centered at about 998 nm and extend its emission lifetime. YbPd and YbPt showed large two-photon absorption cross-section values because of the interaction between the porphyrin units, which caused a loss of centrosymmetry. Optical limiting investigation demonstrated that [Yb(TPP)(LOMe)] and YbPt have comparable performance to C60 by virtue of their heavy-metal effect. Our results indicate that these bisporphyrin dimetallic complexes will find valuable applications in the field of nonlinear optics. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Energy Transfer from Locally Excited ,* to Charge Transfer Ground States in a Silylene,, Hetero-Junction PolymerMACROMOLECULAR RAPID COMMUNICATIONS, Issue 18 2006Giseop Kwak Abstract Summary: The silylene,, conjugating polymer, poly(di- n -hexylsilylenephenylene-ethynylenephenylene) (1) adopted a fairly flexible coil-like conformation due to the bent structure of silylene moiety and showed a unique photoexcited energy transfer behavior. The UV-vis absorption and steady-state/time-resolved photoluminescence studies revealed the occurrence of an intramolecular photoexcited energy transfer (IET) between locally excited ,* to charge transfer ground states as well as an intramolecular charge transfer (ICT). The silylene,, conjugating polymer, poly(di- n -hexylsilylenephenylene-ethynylenephenylene) showing a unique photoexcited energy transfer behavior. [source] Structural and photoluminescence studies of erbium-implanted nanocrystalline silicon thin filmsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 9 2009M. F. Cerqueira Abstract Hydrogenated amorphous and nanocrystalline silicon thin films deposited by hot wire (HW) and radio-frequency plasma-enhanced chemical vapour deposition (RF-PECVD) were erbium-implanted. Their pre-implantation structural properties and post-implantation optical properties were studied and correlated. After 1,h annealing at 150,°C in nitrogen atmosphere only amorphous films showed photoluminescence (PL) activity at 1.54,µm, measured at 5,K. After further annealing at 300,°C for 1,h, all the samples exhibited a sharp PL peak positioned at 1.54,µm, with an FWHM of ,5,nm. Amorphous films deposited by HW originated a stronger PL peak than corresponding films deposited by RF, while in nanocrystalline films PL emission was much stronger in samples deposited by RF than by HW. There was no noticeable difference in Er3+ PL activity between films implanted with 1,×,1014 and 5,×,1015,atoms,cm,2 Er doses. [source] Whispering gallery modes in silicon nanocrystal coated microcavitiesPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 5 2009P. Bianucci Abstract We present photoluminescence studies of silicon-nanocrystal (Si-NC) coated microcavities. The particular geometries studied are hollow fibers where there is a Si-NC coating in the inner surface and regular optical fibers and glass microspheres where the coating is on the outside surface. The coatings were prepared using an inexpensive and straightforward solution-based process that yields a high-quality film. The measured photoluminescence spectra from the resonators show high Q -factor (between 1200 and 2800) resonant modes that correspond with the whispering gallery modes expected from the confinement geometries. The presence of these modes is also an indication that the emission of the Si-NCs is coupled to the cavity. The combination of Si-NCs and optical microcavities with strong confinement has promising potential for applications like sensing, optical communications and may be a possible route toward a Si-NC laser. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Reflectance and photoluminescence studies of InGaN/GaN multiple-quantum-well structures embedded in an asymmetric microcavityPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 7 2006D. Y. Lin Abstract Using reflectance (R) and photoluminescence (PL) measurements InGaN/GaN multiple-quantum-well (MQW) structures embedded in an asymmetric microcavity with different thickness of stacking pairs have been studied. The asymmetric microcavity structures are composed of a cavity sandwitched between the air/semiconductor interface and a mirror using distributed Bragg reflector (DBR). For the DBR with thinner AlN layers the high-reflectivity stop band locates at higher photon energy. The luminescence efficiency and the spectrum of InGaN/GaN multiple-quantum-well structures will be modified by the microcavity. A comparison of PL with R spectra shows that the emission efficiency can be enhanced by matching up the luminescence spectrum coming from the MQW and the high-reflectivity stop band. From the blue shift of the cavity modes as a function of incident angles the refractive index and cavity length can be determined. By measuring the PL spectra as a function of emission angle, it is found that the PL spectra were predominatly determined by microcavity resonances. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Photoluminescence studies of isotopically enriched siliconPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2003D. Karaiskaj Abstract We report the first high resolution photoluminescence studies of isotopically pure silicon. New information is obtained on isotopic effects on the indirect band gap energy, phonon energies, and phonon broadenings, which is in good agreement with previous results obtained in germanium and diamond. Remarkably, the line widths of the no-phonon boron and phosphorus bound exciton transitions in the 28Si sample (99.896% 28Si) are much sharper than in natural Si, revealing new fine structure in the boron bound exciton luminescence. Most surprisingly, the small splittings of the neutral acceptor ground state in natural Si are absent in the photoluminescence spectra of acceptor bound excitons in isotopically purified 28Si, demonstrating conclusively that they result from the randomness of the Si isotopic composition. [source] |