Home About us Contact | |||
Photoluminescence Maxima (photoluminescence + maximum)
Selected AbstractsHighly stable electrochromic polyamides based on N,N -bis(4-aminophenyl)- N,,N,-bis(4- tert -butylphenyl)-1,4-phenylenediamineJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2009Sheng-Huei Hsiao Abstract A new triphenylamine-containing aromatic diamine monomer, N,N -bis(4-aminophenyl)- N,,N,-bis(4- tert -butylphenyl)-1,4-phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di- tert -butyl-substituted N,N,N,,N,-tetraphenyl-1,4-phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N -methyl-2-pyrrolidinone (NMP) and N,N -dimethylacetamide, and could be solution-cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass-transition temperatures of 269,296 °C, 10% weight-loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316,342 nm and photoluminescence maxima around 362,465 nm in the violet-blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole-transporting and electrochromic properties were examined by electrochemical and spectro-electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium-tin oxide-coated glass substrate exhibited two reversible oxidation redox couples at 0.57,0.60 V and 0.95,0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (,T%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330,2343, 2009 [source] Poly(triarylamine): Its synthesis, properties, and blend with polyfluorene for white-light electroluminescenceJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2007Hung-Yi Lin Abstract A new high-molecular-weight poly(triarylamine), poly[di(1-naphthyl)-4-anisylamine] (PDNAA), was successfully synthesized by oxidative coupling polymerization from di(1-naphthyl)-4-anisylamine (DNAA) with FeCl3 as an oxidant. PDNAA was readily soluble in common organic solvents and could be processed into freestanding films with high thermal decomposition and softening temperatures. Cyclic voltammograms of DNAA and PDNAA exhibited reversible oxidative redox couples at the potentials of 0.85 and 0.85 V, respectively, because of the oxidation of the main-chain triarylamine unit. This suggested that PDNAA is a hole-transporting material with an estimated HOMO level of 5.19 eV. The absorption maximum of a PDNAA film appeared at 370 nm, with an estimated band gap of 2.86 eV from the absorption edge. Unusual multiple photoluminescence maxima were observed at 546 nm, and this suggested its potential application in white-light-emission devices. Nearly white-light-emission devices could be obtained with either a bilayer-structure approach {indium tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonate)/PDNAA/poly[2,7-(9,9-dihexylfluorene)] (PF)/Ca} or a polymer-blend approach (PF/PDNAA = 95:5). The luminance yield and maximum external quantum efficiency of the light-emitting diode with the PF/PDNAA blend as the emissive layer were 1.29 cd/A and 0.71%, respectively, and were significantly higher than those of the homopolymer. This study suggests that the PDNAA is a versatile material for electronic and optoelectronic applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1727,1736, 2007 [source] Relationship between the liquid crystallinity and field-effect-transistor behavior of fluorene,thiophene-based conjugated copolymersJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2006Eunhee Lim Abstract A series of fluorene,thiophene-based semiconducting materials, poly(9,9,-dioctylfluorene- alt -,,,,-bisthieno[3,2- b]thiophene) (F8TT2), poly(9,9,-di(3,6-dioxaheptyl)fluorene- alt -thieno[3,2- b]thiophene) (BDOHF8TT), poly(9,9,-di(3,6-dioxaheptyl)fluorene- alt -bithiophene) (BDOHF8T2), and poly(9,9,-dioctylfluorene- co -bithiophene- co -[4-(2-ethylhexyloxyl)phenyl]diphenylamine) (F8T2TPA), was synthesized through a palladium-catalyzed Suzuki coupling reaction. F8TT2, BDOHF8TT, BDOHF8T2, and F8T2TPA films exhibited photoluminescence maxima at 523, 550, 522, and 559 nm, respectively. Solution-processed field-effect transistors (FETs) fabricated with all the copolymers except F8T2TPA showed p -type organic FET characteristics. Studies of the differential scanning calorimetry scans and FETs of the polymers revealed that more crystalline polymers gave better FET device performance. The greater planarity and rigidity of thieno[3,2- b]thiophene in comparison with bithiophene resulted in higher crystallinity of the polymer backbone, which led to improved FET performance. On the other hand, the random incorporation of the triphenylamine moiety into F8T2TPA caused the polymer chains to lose crystallinity, resulting in an absence of FET characteristics. With this study, we could assess the liquid-crystallinity dependence of the field-effect carrier mobility on organic FETs based on liquid-crystalline copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4709,4721, 2006 [source] Red Emitting Diphenylpyrrolopyrrole (DPP)-Based Polymers Prepared by Stille and Heck CouplingMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 23 2006Yu Zhu Abstract Summary: Six new soluble conjugated polymers are described, which were prepared by Stille and Heck polycondensation reactions. They alternately consist of dialkylated 1,4-diketo-3,6-diphenyl-pyrrolo[3,4-c]pyrrole (DPP) units and divinylbenzene or thiophene-based units. The polymers were prepared from 1,4-diketo-2,5-dialkyl-3,6-di(4-bromophenyl)-pyrrolo[3,4-c]pyrrole with alkyl being hexyl (1a), methyl (1b), and 2-ethylhexyl (1c) and 2,5-bis(tributylstannyl)thiophene (2), 5,5,-bis(tributylstannyl)bithiophene (3), 3,4-ethylenedioxythiophene (4) and divinylbenzene (5). The new polymers exhibit brilliant red purple color and strong photoluminescence in common organic solvents. The DPP-phenylenevinylene copolymers exhibit molecular weights up to 41,000 Da, and the poly(DPP-thienylene)s up to 12,200 Da. In chloroform, the poly(DPP-thienylene)s exhibit absorption and photoluminescence maxima up to 560 and 624 nm, respectively, the corresponding maxima of the poly(DPP-phenylenevinylene)s are at 529 and 640 nm, respectively. Quantum yields of fluorescence up to 36% were determined. Cyclic voltammetric studies indicate quasi-reversible oxidation (p -doping) of the poly(DPP-thienylene)s and irreversible reduction (n -doping) of all polymers. Molecular structure of polymers. [source] Photoluminescence effects on gold nano- particles modified by short single stranded DNA moleculesMATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 4 2009O. Kysil Gold-Nanopartikel; Einzelstrang DNA; sichtbare Photolumineszenz; Photosensor Abstract The concept for a function of gold nanoparticle photosensor based on gold nanoparticle optical properties, depending on the size and architecture of their self , assemblies, is revised from the studies of modified by short ssDNA (5.4 nm length) selected gold nanoparticle (8.6 nm diameter) assembling in biosuspensions. Biosensing effect, collective photoluminescence in visible range of different size 2D, 3D assemblies from these nanoparticles, is revealed due to their controlled assembling in biosuspesions, dependent on ssDNA conformation, that changes gold core capping and therefore a force of interparticle interaction. Nanophotosensor is characterized by intensive photoluminescence maxima in two regions of visible range for tested biosuspensions due to detected difference in the self - assemblies' architecture of gold nanoparticles with different gold core capping by the ssDNA molecules. The emission maxima are 4.2x103 pps and 4.1x104 pps in (525,780) nm and (780,920) nm regions mainly for 2D assemblies as nanowires and 3D assemblies as circle holms, correspondently, in DNA buffer suspensions with different biomolecules. The results are explained addressing photoluminescence of gold nanoparticle assemblies to system of discrete electron states in valence and conductivity bands for gold nanoparticle model. Photolumineszenz-Effekt auf Gold Nanopartikel vermittelt durch kurze Einzelstrang DNA Moleküle Das Konzept für die Funktion der Goldpartikel Nanophotosensoren basiert auf den optischen Eigenschaften der Gold Nanopartikel abhängig von der Größe und Architektur ihrer ,Self-Assemblies", und wird auf Basis von Studien von kurzen ssDNA (5.4 nm Länge) mit ausgewählten sich in Biosuspensionen versammelnden Gold Nanopartikeln (8.6 nm Durchmesser) revidiert. Der Biosensoreffekt, sichtbar durch die gesammelte Photolumineszenz im sichtbaren Spektrum von verschieden großen 2D und 3D-Aggregaten von diesen Nanopartikeln, wird wegen ihrer kontrollierten Ansammlung in Biosuspensionen, welche in Abhängigkeit zu den kurzen ssDNA Konformation, dem Ändern der monomolekularen Bedeckungsschicht des Goldkerns und somit durch eine Kraft der Teilchen-Wechselwirkung offenbart. Der Nanophotosensor ist durch zwei intensive Photolumineszenz-Maxima im Bereich des sichtbaren Spektrums für derart geprüfte Biosuspensionen wegen des meßbaren Unterschieds in der Selbstanordnung von Gold Nanopartikeln mit dem verschiedenen Goldkernbedeckungen durch die ssDNA Stränge charakterisiert: Emissionsmaxima liegen bei 4.2x103 pps und 4.1x104 pps in den Wellenlängenbereichen von (525,780) nm und (780,920) nm, jeweils hauptsächlich für 2D-Aggregate als Nanodrähte und 3D-Aggregate in kreisförmiger Anordnung in DNA-Puffersuspendierungen mit verschiedenen Biomolekülen. Die Ergebnisse werden Mithilfe der Adressierung der Photolumineszenz von Gold Nanopartikel-Aggregaten zu System von getrennten Elektronzuständen in Valenz und Leitungsbändern entsprechend den Gold Nanopartikel-Modellen erklärt. [source] Growth peculiarities of silicon nanoparticles in an oxide matrix prepared by magnetron sputteringPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 8 2007L. Khomenkova Abstract The process of thermal decomposition of SiOx layers prepared by magnetron sputtering is studied by photoluminescence, AFM, Auger and SIMS methods. The dependence of the depth distribution of the chemical composition on excess silicon content is obtained. It is shown that as-sputtered SiOx layers are characterized by homogeneous enough chemical composition and do not exhibit photoluminescence. High-temperature annealing in nitrogen atmosphere stimulates not only Si nanoparticle formation but also the appearance of a Si depleted region near layer-substrate interface. This last process is found to be dependent on excess Si content. The decrease of silicon content in the depth of the annealed layers is accompanied by the decrease of Si particle sizes as proved by the blue shift of the photoluminescence maximum. The mechanisms of SiOx decomposition and possible reasons for the appearance of the Si depleted region are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |