Photoelectric Conversion (photoelectric + conversion)

Distribution by Scientific Domains


Selected Abstracts


Bio-inspired Photoelectric Conversion Based on Smart-Gating Nanochannels

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Liping Wen
Abstract Inspired by the light-driven, cross-membrane proton pump of biological systems, a photoelectric conversion system based on a smart-gating, proton-driven nanochannel is constructed. In this system, solar energy is the only source of cross-membrane proton motive force that induces a diffusion potential and photocurrent flowing through the external circuit. Although the obtained photoelectric conversion performance is lower than that of conventional solid photovoltaic devices, it is believed that higher efficiencies can be generated by enhancing the protonation capacity of the photo-acid molecules, optimizing the membrane, and synthesizing high-performance photosensitive molecules. This type of facile and environmentally friendly photoelectric conversion has potential applications for future energy demands such as the production of power for in vivo medical devices. [source]


Vertically Aligned Single-Walled Carbon Nanotubes by Chemical Assembly , Methodology, Properties, and Applications

ADVANCED MATERIALS, Issue 13 2010
Peng Diao
Abstract Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy. [source]


Surface-Grafted Multiporphyrin Arrays as Light-Harvesting Antennae to Amplify Photocurrent Generation

CHEMISTRY - A EUROPEAN JOURNAL, Issue 19 2005
Mitsuhiko Morisue Dr.
Abstract Organized multiporphyrin arrays were developed on the conductive surface by a novel coordination-directed molecular architecture aiming at efficient photoelectric conversion. The basic strategy employs the mutual coordination of two imidazolylporphyrinatozinc(II) units to form a cofacial dimer. Thus, meso,meso -linked bis(imidazolylporphyrinatozinc) (Zn2(ImP)2) was organized onto imidazolylporphyrinatozinc on the gold substrate as a self-assembled monolayer. The organized Zn2(ImP)2 bearing allyl side chains was covalently linked by ring-closing olefin metathesis catalyzed with Grubbs catalyst. Alternating coordination/metathesis reactions allow the stepwise accumulation of multiporphyrin arrays on the gold electrode. A successive increase in absorption over a wide wavelength range occurred after each accumulation step of Zn2(ImP)2 on the gold electrode, and cathodic photocurrent generation was enhanced in the aqueous electrolyte system, containing viologen as an electron carrier. The significant increase of the photocurrent indicates that the multiporphyrin array works as a "light-harvesting antenna" on the gold electrode. [source]