Phytoplankton Dynamics (phytoplankton + dynamics)

Distribution by Scientific Domains


Selected Abstracts


RELATING PHYTOPLANKTON DYNAMICS AND PRODUCTION TO SEDIMENT RESUSPENSION IN SOUTHERN LAKE MICHIGAN

JOURNAL OF PHYCOLOGY, Issue 2001
Article first published online: 24 SEP 200
Millie, D. F.1, Fahnenstiel, G. L.2, Carrick, H. J.3, Lohrenz, S. E.4, & Schofield, O. M. E.5 1USDA-Agricultural Research Service, Sarasota, FL 34236, USA, 2NOAA-Lake Michigan Field Station, Muskegon, MI 49441, USA, 3Institute of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA, 4Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14060, USA; 5Isttitute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick NJ 08901 USA, Sediment resuspension is an annually recurrent feature during spring holomixis in southern Lake Michigan. Relationships between resuspension events and phyt-oplankton biomass, compositional dynamics, and pro-duction were evaluated during 1998 and 1999. Increased water-column light attenuation (KPAR) and suspended particulate matter (SPM) concentrations corresponded with resuspension events within nearshore regions. However, neither KPAR nor SPM corresponded with chlorophyll (Chl) a concentrations, indicating no impact of resuspension on instantaneous biomass accumulation. Diatoms and cryptophytes dominated phytoplankton assemblages and together typically comprised greater than 85% of the Chl a. The associations of SPM/KPAR with diatom Chl a, and the inverse relationship between relative diatom and crypto-phyte Chl a corresponded with the dominance of diatoms and cryptophytes in near- and offshore waters, respectively. Moreover, a spatial variation in species composition occurred during resuspension events; small, centric diatoms exhibiting meroplanktonic life histories and large, pennate diatoms considered benthic in origin were associated with sediment resuspension whereas large, net diatoms and cryptophytes typically comprising phytoplankton of the annual spring bloom and of optically-clear, offshore waters were not. The presence of viable diatom photopigments and the abundance of small centric diatoms within the surficial sediments, established this layer as the source of meroplankton. Integral production was dramatically reduced within sediment-impacted waters; however, nearshore assemblages appeared to have greater photosynthetic capacities than offshore assemblages. Although resuspension dramatically influenced near-shore phytoplankton assemblages, it appeared to have little, if any relationship with the compositional development of the annual spring bloom. [source]


Short-term variability in physical forcing in temperate reservoirs: effects on phytoplankton dynamics and sedimentary fluxes

FRESHWATER BIOLOGY, Issue 1 2007
ALEXANDRINE PANNARD
Summary 1. The effects of wind events on phytoplankton dynamics were investigated in two temperate reservoirs. 2. Meteorological forcing, change in physical and chemical structure of the water column and biological responses of phytoplankton communities were followed for 3 weeks in three seasons. 3. Depending on the season, the phytoplankton response differed in response to nutrient and light conditions, and to the intensity of stratification and mixing. 4. We demonstrated that, on a time scale of a few days, wind events can modify phytoplankton dynamics, in terms of size structure and exported biomass. An increase of mixing favoured the largest size class and disadvantaged the smallest size class, while an increase in stratification had the opposite effects. The short-term change in size structure was reflected in the sedimentary fluxes but with a time lag. [source]


Temporal Coherence of Chlorophyll a during a Spring Phytoplankton Bloom in Xiangxi Bay of Three-Gorges Reservoir, China

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 6 2009
Yao-Yang Xu
Abstract Algal bloom phenomenon was defined as "the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton", yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three-Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from ,0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


ULTRASTRUCTURAL CHARACTERIZATION OF THE LYTIC CYCLE OF AN INTRANUCLEAR VIRUS INFECTING THE DIATOM CHAETOCEROS CF. WIGHAMII(BACILLARIOPHYCEAE) FROM CHESAPEAKE BAY, USA,

JOURNAL OF PHYCOLOGY, Issue 4 2009
Yoanna Eissler
Numerous microalgal species are infected by viruses that have the potential to control phytoplankton dynamics by reducing host populations, preventing bloom formation, or causing the collapse of blooms. Here we describe a virus infecting the diatom Chaetoceros cf. wighamii Brightw. from the Chesapeake Bay. To characterize the morphology and lytic cycle of this virus, we conducted a time-course experiment, sampling every 4 h over 72 h following viral inoculation. In vivo fluorescence began to decline 16 h after inoculation and was reduced to <19% of control cultures by the end of experiment. TEM confirmed infection within the first 8 h of inoculation, as indicated by the presence of virus-like particles (VLP) in the nuclei. VLP were present in two different arrangements: rod-like structures that appeared in cross-section as paracrystalline arrays of hexagonal-shaped profiles measuring 12 ± 2 nm in diameter and uniformly electron-dense hexagonal-shaped particles measuring , 22,28 nm in diameter. Nuclei containing paracrystalline arrays were most prevalent early in the infection cycle, while cells containing VLP increased and then declined toward the end of the cycle. The proportion of nuclei containing both paracrystalline arrays and VLP remained relatively constant. This pattern suggests that rod-like paracrystalline arrays fragmented to produce icosahedral VLP. C. cf. wighamii nuclear inclusion virus (CwNIV) is characterized by a high burst size (averaged 26,400 viruses per infected cell) and fast generation time that could have ecological implications on C. cf. wighamii population control. [source]


HOST PARASITE INTERACTIONS BETWEEN FRESHWATER PHYTOPLANKTON AND CHYTRID FUNGI (CHYTRIDIOMYCOTA),

JOURNAL OF PHYCOLOGY, Issue 3 2004
Bas W. Ibelings
Some chytrids are host-specific parasiticfungithat may have a considerable impact on phytoplankton dynamics. The phylum Chytridiomycota contains one class, the Chytridiomycetes, and is composed of five different orders. Molecular studies now firmly place the Chytridiomycota within the fungal kingdom. Chytrids are characterized by having zoospores, a motile stage in their life cycle. Zoospores are attracted to the host cell by specific signals. No single physical,chemical factor has been found that fully explains the dynamics of chytrid epidemics in the field. Fungal periodicity was primarily related to host cell density. The absence of aggregated distributions of chytrids on their hosts suggested that their hosts did not vary in their susceptibility to infection. A parasite can only become epidemic when it grows faster than the host. Therefore, it has been suggested that epidemics in phytoplankton populations arise when growth conditions for the host are unfavorable. No support for such a generalization was found, however. Growth of the parasitic fungus Rhizophydium planktonicum Canter emend, parasitic on the diatom Asterionella formosa Hassal, was reduced under stringent nutrient limitation,because production and infectivity of zoospores were affected negatively. A moderate phosphorous or light limitation favored epidemic development, however. Chytrid infections have been shown to affect competition between their algal hosts and in this way altered phytoplankton succession. There is potential for coevolution between Asterionella and the chytrid Zygorhizidium planktonicum Canter based on clear reciprocal fitness costs, absence of overall infective parasite strains, and possibly a genetic basis for host susceptibility and parasite infectivity. [source]


DO PHYSICAL FACTORS REGULATE PHYTOPLANKTON DISTRIBUTION PATTERNS IN LARGE, SHALLOW LAKES?

JOURNAL OF PHYCOLOGY, Issue 2000
H.J. Carrick
Factors that regulate phytoplankton dynamics in shallow, productive lakes are poorly understood, due to their predisposition for frequent algal blooms and sediment resuspension events. In Lake Apopka, greatest phytoplankton biomass reflects wind-induced resuspension of algae (meroplankton) that exists on the aphotic lake bottom in a layer approximately 5 cm thick; this assemblage is dominated by diatoms (>60% of total biomass) that can occur in resting stages. Once exposed to moderate light, meroplankton are capable of growth and photosynthetic rates comparable with surface populations. In Lake Okeechobee, remote sensing was used to assess the basin-wide distribution of suspended particles. Satellite reflectance values agreed well with in situ particle densities at 20 in-lake stations (average r2; LANDSAT = 0.81, AVHRR = 0.53), and maps of algal blooms (r2 = 0.79, p , 0.01). The greatest chlorophyll concentrations occurred in the vicinity of tributary nutrient inputs at the lake's perimeter, while turbidity increased towards the center of the lake reflecting predominant water circulation patterns. These results underscore the importance of physical-biological interactions in lakes. [source]


Viral Control of Phytoplankton Populations,a Review,

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2004
CORINA P. D. BRUSSAARD
ABSTRACT. Phytoplankton population dynamics are the result of imbalances between reproduction and losses. Losses include grazing, sinking, and natural mortality. As the importance of microbes in aquatic ecology has been recognized, so has the potential significance of viruses as mortality agents for phytoplankton. The field of algal virus ecology is steadily changing and advancing as new viruses are isolated and new methods are developed for quantifying the impact of viruses on phytoplankton dynamics and diversity. With this development, evidence is accumulating that viruses can control phytoplankton dynamics through reduction of host populations, or by preventing algal host populations from reaching high levels. The identification of highly specific host ranges of viruses is changing our understanding of population dynamics. Viral-mediated mortality may not only affect algal species succession, but may also affect intraspecies succession. Through cellular lysis, viruses indirectly affect the fluxes of energy, nutrients, and organic matter, especially during algal bloom events when biomass is high. Although the importance of viruses is presently recognized, it is apparent that many aspects of viral-mediated mortality of phytoplankton are still poorly understood. It is imperative that future research addresses the mechanisms that regulate virus infectivity, host resistance, genotype richness, abundance, and the fate of viruses over time and space. [source]