Home About us Contact | |||
Phytic Acid Content (phytic + acid_content)
Selected AbstractsChanges in the biochemical and functional properties of the extruded hard-to-cook cowpea (Vigna unguiculata L. Walp)INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 4 2010Karla A. Batista Summary Changes in the biochemical and functional properties of the hard-to-cook cowpea bean after treatment by the extrusion process are reported. The extrusion was carried out at 150 °C, with a compression ratio screw of 3:1, a 5-mm die, and a screw speed of 150 r.p.m. The extrusion caused the complete inactivation of the ,-amylase and lectin and it also reduced the trypsin inhibitor activity (38.2%) and phytic acid content (33.2%). The functional properties were also modified by the process, an increase of 2.5 times in the water absorption index and 3.1% in the water solubility were observed. The digestibility of the hard-to-cook flour of the cowpea bean was improved after the extrusion, with a 55.9% increase in protein digestibility and a 5.9% increase in starch digestibility. [source] Effect of fermentation on in vitro digestibilities and the level of antinutrients in moth bean [Vigna aconitifolia (Jacq.) Marechal]INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 11 2008Amrit Bhandal Summary The effect of fermentation with varying temperatures and time periods on the nutritive value of Moth bean was studied. Results indicated that at 30 °C, protein digestibility increased from 60% in the non-processed moth bean to 77%, 78% and 80% and at 35 °C, increased to 81%, 83% and 85% following 12, 18 and 24 h of fermentation (controlled) period, respectively. Fermentation also caused an appreciable enhancement (96,133%) in starch digestibility with increase in period and temperature of fermentation. Fermentation of moth bean resulted in 24,34% reduction in phytic acid content at 30 °C and 33,42.5% at 35 °C. Polyphenol content was reduced by 42%, 48% and 51% at 30 °C and by 44%, 49% and 54% at 35 °C after 12, 18 and 24 h of fermentation period, respectively. Prolonging the period of fermentation from 12 to 18 and 24 h at 30 °C also caused a loss in TIA. [source] EFFECTS OF COOKING AND DRYING PROCESSES ON PHYSICAL, CHEMICAL AND SENSORY PROPERTIES OF LEGUME BASED BULGURJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 5 2009NERMIN BILGIÇLI ABSTRACT The changes in physical, chemical and sensory properties of common bean (CB) and chickpea (CP) bulgur prepared with different cooking (atmospheric, pressure and microwave) and drying (oven at 60, 70 and 80C; microwave at 350 and 700 W) processes were investigated. Neither the cooking methods nor the drying methods significantly affected the ash and protein contents of CB and CP bulgur. Pressure cooking gave lower phytate phosphorus and higher bulgur yield and volume increase values when compared to the other cooking methods. Average bulgur yields were found as 82% for CB and 84% for CP. Cooking processes decreased the phytic acid content of the bulgurs between 25.2 and 39.5% according to raw legume. Ca, K, Mg, P, Zn, Cu and Fe contents of the bulgurs decreased in variable degrees (8.69,28.5%) when compared to raw materials. Pressure cooked and oven (80C) dried bulgur samples in the case of bulgur pilaf were appreciated by the panelists in terms of overall acceptability. PRACTICAL APPLICATIONS Bulgur is a valuable cereal product with its high nutritional value and long shelf life. In this research, bulgur process was applied successfully on common bean and chickpea, and new legume-based bulgur products improved. The bulgur yield (BY) of the legumes was above 80%. Pressure cooking increased the nutritional, sensory and technological quality of the legume bulgurs. [source] The effects of hydrothermal processing on antinutrients, protein and starch digestibility of food legumesINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 7 2005Zia -ur-Rehman Summary The effects of hydrothermal processing on antinutrients and the protein and starch digestibility of black grams, chick peas, lentils and red and white kidney beans was investigated. The tannins and phytic acid contents in these five food legumes ranged from 770 to 1100 and 970 to 1440 mg/100 g, respectively, whereas protein and starch digestibility of the raw food legumes was found to be from 33.8 to 37.6 and 36.8 to 42.0%, respectively. A reduction in the level of these antinutrients, along with an improvement in protein and starch digestibility, was observed after cooking. The tannins and phytic acid contents were reduced by 33.1,45.7 and 28.0,51.6%, respectively, because of the use of different hydrothermal treatments at 100, 121 and 128 °C. Maximum improvement in protein digestibility (95.7,105.1%) and starch digestibility (116.7,137.7%) was observed on cooking at 121 °C for 10 min. However, cooking in boiling water resulted in improvement in protein and starch digestibility of the food legumes by 86.9,93.3 and 84.0,90.4%, respectively. [source] Evaluation of pea protein isolate as alternative protein source in diets for juvenile tilapia (Oreochromis niloticus)AQUACULTURE RESEARCH, Issue 5 2007Carsten Schulz Abstract To evaluate isolated pea protein as feed ingredient for tilapia (Oreochromis niloticus) juveniles, triplicate groups were fed with four isonitrogenous [crude protein: 421.1,427.5 g kg,1 in dry matter (d.m.)] and isoenergetic (gross energy: 20.46,21.06 MJ kg,1 d.m.) diets with varying protein sources for 8 weeks. Fish meal-based protein content of diets was substituted with 0% (diet 100/0=control group), 30% (diet 70/30), 45% (diet 55/45) and 60% (diet 40/60) isolated pea protein. Tilapia juveniles with an initial body weight of 2.23,2.27 g were fed in average at a level of 5% of their body weight per day. Highest individual weight gain (WG: 21.39 g) and specific growth rate (SGR: 4.21% day,1) and best feed conversion ratio (FCR: 0.90) were observed in tilapia fed diet 100/0, followed by fish-fed diet 70/30 (WG: 19.09 g; SGR: 4.03% day,1; FCR: 0.98), diet 55/45 (WG: 16.69 g; SGR: 3.80% day,1; FCR: 1.06) and diet 40/60 (WG: 16.18 g; SGR: 3.74% day,1; FCR: 1.06). Although fish fed diet 100/0 showed the best performance, inclusion of 30% protein derived from pea protein isolate resulted in a growth performance (in terms of WG and SGR) that did not differ significantly from diet 100/0 in contrast to fish fed diet 55/45 and 40/60. Crude ash content in the final body composition of the experimental fish decreased with increasing dietary pea protein content, while crude protein and lipid content remained equal between the groups. Significant decreasing growth performance and body ash incorporation of tilapia at higher inclusion levels seem to be mainly related to the dietary amino acid profile and phytic acid contents. [source] Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysisMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue S2 2009Ulrich Schlemmer Abstract The article gives an overview of phytic acid in food and of its significance for human nutrition. It summarises phytate sources in foods and discusses problems of phytic acid/phytate contents of food tables. Data on phytic acid intake are evaluated and daily phytic acid intake depending on food habits is assessed. Degradation of phytate during gastro-intestinal passage is summarised, the mechanism of phytate interacting with minerals and trace elements in the gastro-intestinal chyme described and the pathway of inositol phosphate hydrolysis in the gut presented. The present knowledge of phytate absorption is summarised and discussed. Effects of phytate on mineral and trace element bioavailability are reported and phytate degradation during processing and storage is described. Beneficial activities of dietary phytate such as its effects on calcification and kidney stone formation and on lowering blood glucose and lipids are reported. The antioxidative property of phytic acid and its potentional anticancerogenic activities are briefly surveyed. Development of the analysis of phytic acid and other inositol phosphates is described, problems of inositol phosphate determination and detection discussed and the need for standardisation of phytic acid analysis in foods argued. [source] |