Home About us Contact | |||
Phytate Phosphorus (phytate + phosphorus)
Selected AbstractsConstruction of transgenic Bacillus mucilaginosus strain with improved phytase secretionJOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2005X. Li Abstract Aims:, To construct a transgenic Bacillus mucilaginosus strain to increase the secretion capability of a wild-type isolate of B. mucilaginosus D4B1 to hydrolyse phytate phosphorus, which can be used as a microbial fertilizer in field application. Methods and Results:, We constructed a phytase secreting expression vector pSP43 with a mini-Tn5 transposon and a Aspergillus fumigatus phytase expression cassette. The vector pSP43 was successfully transferred into the wild-type B. mucilaginosus using the particle bombardment method, and three transgenic strains with a stable copy of phytase expression cassette integrated into the chromosome of the B. mucilaginosus by Tn5 transposition were selected. The phytase activity of the engineered strains increased 36,46-fold when compared with the wild-type strain of D4B1. Conclusions:, The A. fumigatus phytase gene can be expressed under the direction of p43 promoter in B. mucilaginosus. The expression protein is secreted extracellularly and newly constructed strains showed a high phytase activity. Significance and Impact of the Study:, A transgenic Bacillus strain by the particle bombardment method was constructed. [source] EFFECTS OF COOKING AND DRYING PROCESSES ON PHYSICAL, CHEMICAL AND SENSORY PROPERTIES OF LEGUME BASED BULGURJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 5 2009NERMIN BILGIÇLI ABSTRACT The changes in physical, chemical and sensory properties of common bean (CB) and chickpea (CP) bulgur prepared with different cooking (atmospheric, pressure and microwave) and drying (oven at 60, 70 and 80C; microwave at 350 and 700 W) processes were investigated. Neither the cooking methods nor the drying methods significantly affected the ash and protein contents of CB and CP bulgur. Pressure cooking gave lower phytate phosphorus and higher bulgur yield and volume increase values when compared to the other cooking methods. Average bulgur yields were found as 82% for CB and 84% for CP. Cooking processes decreased the phytic acid content of the bulgurs between 25.2 and 39.5% according to raw legume. Ca, K, Mg, P, Zn, Cu and Fe contents of the bulgurs decreased in variable degrees (8.69,28.5%) when compared to raw materials. Pressure cooked and oven (80C) dried bulgur samples in the case of bulgur pilaf were appreciated by the panelists in terms of overall acceptability. PRACTICAL APPLICATIONS Bulgur is a valuable cereal product with its high nutritional value and long shelf life. In this research, bulgur process was applied successfully on common bean and chickpea, and new legume-based bulgur products improved. The bulgur yield (BY) of the legumes was above 80%. Pressure cooking increased the nutritional, sensory and technological quality of the legume bulgurs. [source] Brewer's yeast efficiently degrades phytate phosphorus in a corn-soybean meal diet during soaking treatmentANIMAL SCIENCE JOURNAL, Issue 4 2009Gyo-Moon CHU ABSTRACT Microbes such as yeast and Aspergillus are known to produce phytase, and Aspergillus phytase has been used as a feed additive for improving phytate-phosphorus bioavailability in monogastric animals. We measured phytase activity in some by-products from fermented food and beverage productions by yeast and Aspergillus. The phytase activity was as high as 3577 and 2225 PU/kg DM in raw and dried brewer's yeasts, respectively. On the other hand, the phytase activity was approximately 400 PU/kg DM in white-wine yeast and red-wine yeast. The phytase activity was further low in natto (fermented soybean) residue, soy sauce cake, rice brewer's grain and the activity was not detected in dried corn-barley distiller's grain with soluble and sweet-potato distiller's residue. The stability of phytase against pepsin was much lower in the brewer's yeast than in an Aspergillus phytase preparation. On the other hand, the addition of raw brewer's yeast effectively degraded phytate phosphorus in a corn-soybean meal diet during soaking. These results suggest that phytase in the examined by-products is not suitable for the phytase source of conventional diets, but that the soaking treatment with a raw brewer's yeast is an alternative method for improving phytate-phosphorus bioavailability in corn-soybean meal diets for pigs. [source] |